
ARRIVAL TIMES OF QUANTUM

WAVE PACKETS

THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY (SCIENCE)

OF THE

JADAVPUR UNIVERSITY

Md. Manirul Ali
SATYENDRANATH BOSE NATIONAL CENTRE

FOR BASIC SCIENCES
JD BLOCK, SECTOR 3, SALT LAKE CITY

KOLKATA 700 098, INDIA

January, 2006



i

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the thesis entitled Arrival Times of Quantum Wave Packets

submitted by Md. Manirul Ali, who got his name registered on June 25, 2004 for

the award of Ph.D. (Science) degree of Jadavpur University, is absolutely based

upon his own work under the supervision of Dr. Archan S. Majumdar at S. N. Bose

National Centre For Basic Sciences, Kolkata, India and that neither this thesis nor

any part of it has been submitted for any degree/diploma or any other academic award

anywhere before.

Archan S. Majumdar (Reader),

Satyendranath Bose National Centre For Basic Sciences,

JD Block, Sector 3, Salt Lake, Kolkata 700 098, India.

Date :



ii

Acknowledgments

It gives me great pleasure to express my gratitude to my supervisor Dr. Archan S.

Majumdar for his constant guidance, encouragement and support. He has been always

more than a guide to me.

During my Ph.D. period I have extensively interacted with Prof. Dipankar Home who

remains an ideal in my life both as a physicist and as a human being. I am also grateful

to Late Prof. Shyamal Sengupta who has inspired me immensely.

Another person who has influenced me during this research period is Dr. Guruprasad Kar

who taught me the subject “quantum information theory”. I remember all the beautiful

moments that I spent with him discussing physics and nonphysics.

My sincere thanks go to all faculty members of S.N. Bose Centre for their help and

discussions throughout this research period.

I am thankful to my colleagues Samir, Alok, Biplab, my seniors Anirban-da, Debasis-da,

Sibasish-da, for their help and discussions. My heartiest thanks goes to my friends, seniors

and juniors who made my stay at S.N. Bose Centre colourful and enjoyable. I wish to

thank all the staff members of this centre for their sincere cooperation and help.

I would like to thank the Department of Science and Technology, Government of India

for the partial travel support for my academic visit to Vienna, Austria. I would also like

to thank the Council of Scientific and Industrial Research, Government of India for the

CSIR(NET) research fellowship and also for providing me the partial travel support of

my visit to Vienna.

I am grateful to my parents, brothers, my sister-in-law, my little nephew and all of my

friends for their constant encouragement and their sacrifice.

I would like to thank the following organizations/conveners for warm hospitality and

fruitful interactions during the respective conferences/schools/workshops:

1. 2nd Winter Institute on Foundations of Quantum Theory and Quantum Optics: Quan-

tum Information Processes, S.N.Bose National Centre for Basic Sciences, Calcutta, 2002.



iii

2. Seventh Discussion Meeting on Quantum Information and Quantum Computation

conducted by Kumari L.A. Meera Memorial Trust held in January 30 to Feb 5, 2002,

Dhvanyaloka, Mysore, India.

3. School on “Quantum Physics and Information Processing” (QPIP) held at Tata Insti-

tute of Fundamental Research, Mumbai, 2002.

4. National Conference on Theoretical Physics (TP-2003) held at Indian Association for

Cultivation of Science (IACS), Calcutta, 21-24 January, 2003.

5. SERC School on Quantum Information and Quantum Optics held at Physical Research

Laboratory, Ahmedabad, India, February 1-14, 2004.

6. Congress of Philosophy and Foundations of Sciences-IX, New Delhi, January 10–14,

2005, Organised by the Centre for Philosophy and Foundations of Science, New Delhi,

India.

7. Conference “Quantum Physics of Nature & 6th European QIPC workshop”, May

20-26, 2005, Vienna, Austria.

Md. Manirul Ali

Satyendranath Bose National Centre For Basic Sciences,

JD Block, Sector 3, Salt Lake, Kolkata 700 098, India.



iv

List of Publications

1. Understanding Quantum Superarrivals using the Bohmian model

Md. Manirul Ali, A. S. Majumdar and D. Home

Phys. Lett. A 304, 61 (2002).

2. Spin dependent observable effect for free particles using the arrival time

distribution

Md. Manirul Ali, A. S. Majumdar, D. Home and S. Sengupta

Phys. Rev. A 68, 042105 (2003).

3. Optimal asymmetric cloning machine on a great circle using no-signalling

condition

S. Kunkri, Md. Manirul Ali, G. Narang, D. Sarkar

Journal of Calcutta Mathematical Society 1, 121 (2005).

4. Quantum superarrivals: Bohr’s wave-particle duality revisited

Md. Manirul Ali, A. S. Majumdar and D. Home

Found. Phys. Lett. 19, 179 (2006).

5. Observability of the arrival time distribution using spin-rotator as a quan-

tum clock

A. K. Pan, Md. Manirul Ali and D. Home

Accepted for publication: Phys. Lett. A ; quant-ph/0503102

6. The Quantum-classical comparison of the arrival time distribution through

the probability current

Md. Manirul Ali, A. S. Majumdar and A. K. Pan

Communicated for publication ; quant-ph/0501182.

7. On a quantum analogue of Galileo’s leaning tower experiment

Md. Manirul Ali, A. S. Majumdar and D. Home

Communicated for publication.

8. Distinguishability between states and non-ideal Stern-Gerlach

measurement

A. K. Pan, Md. Manirul Ali, A. S. Majumdar and D. Home

(Under preparation)



v

Contents

1 Introduction 1

1.1 Time in Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Time as an observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Nonexistence of a time operator in quantum mechanics . . . . . . . . . . . 5

1.4 Towards a probability distribution of arrival time . . . . . . . . . . . . . . 9

2 Probability current density as the arrival time distribution 16

2.1 Ambiguity of arrival time distribution in quantum mechanics . . . . . . . . 17

2.2 Uniqueness of the probability current density for any relativistic wave equa-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 A novel spin dependent effect on the arrival time distribution for free particles 19

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Classical limit of arrival time 28

3.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Quantum-classical correspondence . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Wave packets under free fall 42

4.1 Quantum mechanics and the equivalence principle . . . . . . . . . . . . . . 42

4.2 Mass dependence of position detection probabilities . . . . . . . . . . . . . 46

4.3 Mass dependence of mean arrival time and the classical limit . . . . . . . . 50

4.4 Classical statistical analogue of a wave packet under free fall . . . . . . . . 52

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Quantum superarrivals 55

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Wave packet dynamics under time-varying potential barriers . . . . . . . . 59



vi

5.3 Information transfer using the wave function through a time-varying bound-

ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Quantum superarrivals: Bohr’s wave-particle duality revisited . . . . . . . 72

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 A Bohmian perspective 79

6.1 A brief review of the Bohm model . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Probability current as the arrival time distribution from the Bohmian in-

terpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Understanding quantum superarrivals using Bohmian mechanics . . . . . . 85

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Conclusions 90



List of Figures

2.1 The spin-dependent contribution to the mean arrival time computed at the

point x=1, y=1, z=1 is plotted against the initial group velocity of the

packet along the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The mean arrival times τ̄ (upper curve) and τ̄i (lower curve) computed at

the point x = 1, y = 2, z = 1 are plotted against the initial group velocity

of the packet along the x-axis. and a = 0.001, b = 0.4, c = 0.01, x1 = 0. . . 24

3.1 The position probability densities ρQ(x, t) and ρC(x, t) are plotted for vary-

ing mass of the particles (in atomic mass units) with σ0 = 10−5 cm, u = 103

cm/sec, C=10 and t=10−5 sec. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 The probability current densities JQ(x, t) and JC(x, t) are plotted for vary-

ing mass of the particles (in atomic mass units) at a detector location X=10

cm with σ0 = 10−4 cm, u = 103 cm/sec, C=100. . . . . . . . . . . . . . . . 38

3.3 The mean arrival time τ̄ is plotted against the mass of the particles (in

atomic mass unit) at different detector locations X = 5.1 cm, X = 5.2 cm,

and X = 5.3 cm. for C=10, σ0 = 0.0001 cm, u = 10 cm/sec. . . . . . . . . 39

4.1 The variation of mean arrival time with mass (in atomic mass unit) at a

detector location Z for an initial Gausssian position distribution. We take

σ0 = 10−4 cm, Z = 10−2 cm. . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 The reflection probability for particles reflected from a perturbed barrier is

plotted against time (solid line). The corresponding reflection probability

for the static barrier is shown by the dotted line. . . . . . . . . . . . . . . . 63

vii



viii

5.3 The top curve corresponds to the static case and reaches value 1 asymp-

totically. |R(t)|2 for other curves correspond to various values of ε. The

curve with the lowest asymptotic value corresponds to the smallest value

of ε chosen for this set. As one increases ε, superarrivals are slowly wiped off. 64

5.4 The magnitude of superarrivals η diminish with an increase in ε, the time

taken for barrier height reduction. This behaviour is seen for three different

detector positions x′= -0.4, -0.5 and -0.6 respectively. . . . . . . . . . . . . 65

5.5 The transmission probability |T (t)|2 is plotted for various values of ε. The top

curve reaches value 1 asymptotically and corresponds to the zero barrier case.

The next two curves with (ε = 10) and (ε = 40) respectively, represent the

transmission probabilities for the rising barriers. . . . . . . . . . . . . . . . . . 67

5.6 Superarrivals in the transmitted wave packet are shown to decrease with increase

in ε, the time taken for barrier raising. The three different curves correspond to

three different values of the detector position x′. . . . . . . . . . . . . . . . . . 67

5.7 Snapshots of the wave packet are plotted at four different instants of time.

The initial narrow Gaussian is heavily distorted upon striking the barrier.

It splits up into two, with the reflected part possessing a secondary peak

shifted towards the detector. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 The upper curve represents a plot of ∆t (duration of superarrivals) versus

ε. The lower curve is a plot of ve/vg versus ε. Here the detector position

x′ = −0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 The duration of superarrivals ∆t = (tc − td) is plotted versus ε. The three

different curves denote three different values of the detector position x′. . . 71

5.10 The reflection and transmission probabilities are plotted with time for the static

as well as perturbed cases. The barrier reduction time ε = 10. The region within

the small box exhibits a kink in the transmitted probability. . . . . . . . . . . 74

5.11 The transmission probability for the perturbed barrier is plotted versus time for

three different values of the barrier reduction time. The flat regions of the curves

indicate no transmission during these time intervals . . . . . . . . . . . . . . . 74



ix

6.1 Snapshots of the quantum potential Q(x, t) are plotted versus x at various in-

stants of time. The potential barrier is located in the region −0.008 < x < 0.008.

Barrier perturbation is from t = 400 to t = 410. The full, dashed and dotted

curves represent Q at times t = 420, 425 and 430 respectively. The wells in the

quantum potential move towards the left with time and reflect incoming parti-

cles away from the vicinity of the classical barrier. This explains why certain

particles arrive at the detector earlier than they would have done if reflected

from a static barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 The Bohmian superarrival parameter β̄ is plotted versus ε. . . . . . . . . . . . 87

6.3 Bohmian trajectories for particles originating from the same initial positions get

reflected differently from the static and the perturbed barriers. The trajectories

undergo sharper turns when the barrier is perturbed and arrive the detector

earlier than they would have done for the static barrier case. The barrier is

placed at x = −0.008 to x = 0.008. Perturbation takes place from t = 400 to

t = 410. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



List of Tables

4.1 Mass dependence of the probability at the initial projection point. We take

u = 103 cm/sec, σ0 = 10−3 cm, ε = σ0, t = t2 = 2u/g sec. . . . . . . . . . . 49

4.2 Mass dependence of the probability at the turning point. We take u = 103

cm/sec, σ0 = 10−3 cm, ε=σ0, t = t1 = u/g sec. . . . . . . . . . . . . . . . . 49

x



Chapter 1

Introduction

1.1 Time in Quantum Theory

In his famous 1913 paper Bohr [1] suggested that the interaction of radiation and atoms

ocurred by means of instantaneous transitions, “quantum jumps”, among the allowed

atomic orbits. The jumps were accompanied by the absorption or emission of radiation,

whose frequency corresponded to the energy difference of the stationary orbits, ν = ∆E/h.

However, no mechanism for the timing of these transitions was provided. Soon Ruther-

ford pointed out to Bohr that this was a “grave difficulty” of his theory, and Slater noted

a contradiction between the assumed instantaneous character of the jumps and the ob-

served narrow widths of the spectral lines. Heisenberg tried to solve the problems of the

old quantum theory by creating a discontinuous matrix mechanics, in which visualizable

models based on a space-time continuum, in particular the orbits, would be eliminated.

However, the timing of events did not quite fit in this scheme, as evidenced by a letter

from Pauli [2] to Bohr in 1925

“In the new theory, all physically observable quantities still don’t really occur. Absent,

namely, are the time instants of transition processes, which are certainly in principle

observable (as for example, are the instants of the emission of photoelectrons)”.

He also speculated that perhaps time could be defined through the concept of energy,

and asked the meaning of a time duration. Heisenberg1 answered a few days later [4]:

1Heisenberg, in a letter to Einstein, wondered if the times of transition should be regarded as observable

or not [3].

1
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“Your problem of “durarion” plays a fundamental role,....When, as in the new theory,

a point in space has no longer a fixed place, or when this place is still only defined formally

and symbolically, then the same is true also of the time-point of an event. But there is

always given a rough duration, as also a rough place in space: with our geometric picture

we shall still be able to achieve a rough picture of the phenomena”. 2

Heisenberg’s words reflect some aspects of his uncertainty paper. However, things

were not quite matured at that stage. The original agenda of matrix theorists was quite

radical; they doubted that the “position of the electron in time” could be given any mean-

ing. However, reacting to the success of the visualizable and continuous wave mechanics

of Schrödinger, matrix theorists retreated eventually from the extreme original program.

Even though Schrödinger had shown the formal equivalence between matrix and wave

mechanics for bound systems, an interpretational war began, and the two approaches were

for a while competing, each claiming a superior or more fundamental status. Born’s aim

in his two 1926 collision papers was to harmonize the jumps and the wave picture [6, 7].

For an electron-atom collision he interpreted the squared modulus of the stationary wave

function coefficients at infinite distances as probabilities for the electron “to be thrown”

into a given direction for a given atomic state. The theory would therefore not provide the

actual state of the atom after the collision, but rather the probability of a certain event,

identified by Born as a quantum jump. In this description, however, the wave function

considered was stationary, so the question of the timing of the event was not really ad-

dressed. Pauli expressed his doubts about the role of time in his first Encyclopedia article

[8] and emphasized that Einstein’s probabilistic treatment of absorption and emission was

mute about the times of transition. Did this fact indicate a fundamental restriction, or

was it due to the incompleteness of the theory ? “This is very much debated, yet still

an unsolved issue”, he concluded. He also insisted on the problem of the duration of the

jump, suggesting that perhaps the precision limit of the time of transition was of the same

order of magnitude as the period of the light emitted, but admitted that he could not offer

a more precise analysis. Heisenberg [9] in his famous 1927 paper mentioned “...the time of

transitions or “quantum jump” must be as concrete and determinable by measurement as,

2The main source for this section is a recent book edited by J.G. Muga, I.L. Egusquiza and R. Sala

Mayato [5].
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say, energies in stationary states.” The duration question is still being studied nowadays

[10].

An important landmark in the history of time in quantum mechanics is a footnote

of Pauli’s second Encyclopedia article of 1933 [11], re-edited with minor changes in 1958

[12], in which the argument runs as follows: If there existed a self-adjoint time operator

T̂ canonically conjugate to the Hamiltonian,
[
Ĥ, T̂

]
= ih̄, the application of the uni-

tary operator exp(−iE1T̂ /h̄) to the energy eigenstate |E〉 would produce a new energy

eigenstate with energy eigenvalue E − E1, so that the spectrum of E would necessarily

extend continuously over the range [−∞,∞]. In principle this precludes the existence of a

self-adjoint time operator for systems where the spectrum of the Hamiltonian is bounded,

semibounded, i.e., for most of the systems of physical interest [11]-[17]. Pauli’s conclu-

sion was that “...the introduction of an operator T̂ must fundamentally be abandoned...”.

One year before Pauli’s article, von Neumann had published his “Mathematical Founda-

tions of Quantum Mechanics” [18] where he pinpoints as the “chief weakness of quantum

mechanics” its non-relativistic character, which distinguishes t (without a corresponding

operator) from the three space coordinates x,y,z represented by operators. Untill the

fifties there had been no substantial change in the foundations of quantum theory, and

the Copenhagen interpretation was rather well founded and accepted according to which

events, or facts, within quantum theory would occur through discontinuous jumps which

are not contained in the quantum equations and obviously, if they are not contained in

the quantum equations, how can we predict the time distributions for these events ? This

lack of an explicit description of events has been considered by some physicists as a major

problem of the theory. Some have tried to modify or re-interpret quantum mechanics to

include events and/or discontinuous jumps explicitly. The Bohmian model of quantum

mechanics [19] in terms of the causal trajectories of individual particles was a major step

along that direction.

1.2 Time as an observable

One of the first lessons of quantum mechanics was that a property of a system does not

correspond to an element of reality until it is measured. It makes no sense to talk about



Chapter 1. Introduction 4

the position of a particle or the momentum of the particle, in and of itself. It is only when

we measure a physical quantity that we can actually say that a system possesses it. The

particle does not have a position until its position is actually measured.

Ordinarily in quantum mechanics, one is interested in measuring properties of a sys-

tem at a particular time t. One might want to know a particle’s position, momentum, or

spin and the measurement of this quantity occurs at a certain time. For experiments at

a fixed time, quantum mechanics provides us with a useful formalism to describe reality.

Observables are represented by self-adjoint operators, and in the Heisenberg representa-

tion they evolve in time. The possible results of any measurement and expectation values

at any instant of time t can be found by applying these operators to the wave function

of the system at that time. This immediately raises the question of what the parameter

time t represents in the Heisenberg equations of motion. Since t is a number and not a

self-adjoint operator, it does not appear to be an observable in the usual sense. For any

measurement of an observable A(t) of a system, one can imagine a measurement, where

one attempts to measure the time tA at which the system attains a particular value of

A. In other words this measurement determines the time at which a certain event occurs,

where the event in question is the system attaining a particular value (or values) of an

observable. For example, instead of measuring the position of a particle at a certain time,

one can consider the measurement where the roles of x and t are interchanged. Instead of

measuring where the particle is at time t, one measures the time that a particle is found

at a particular location xA. In this kind of measurement, the position xA is the parameter

while the time becomes the observable one. This kind of measurements are quite common

in modern laboratory experiments. However, surprisingly, this kind of time measurements

are not easily dealt with using the conventional tools of quantum mechanics. In contrast

to the difficulties found for a consistent theoretical treatment of the arrival time, many

experimental techniques measure “arrival time” or “times of flight”. In particle physics

one often wants to know the time at which certain collisions or decays occurred. The

standard interpretation of these “times of flight” experiments is purely classical.
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1.3 Nonexistence of a time operator in quantum mechanics

In spite of the emphasis of quantum mechanics on the concept of “observable”, formal-

ization of time observables is still an open and challenging fundamental question. The

role that time plays in quantum mechanics has always been controversial. This is in part

a consequence of the rather singular status that time exhibits in nonrelativistic physics.

In particular, time enters the Schrödinger equation as an external parameter and, ac-

cordingly, the quantum formalism is usually concerned with probability distributions of

measurable quantities at a definite instant of time. However, one may also ask for the

instant of time at which a certain property of a quantum system takes a given value. In

this case time has the character of a dynamical variable: It depends on the initial state

of the system and on its dynamical evolution, and appears as an intrinsic property of

the physical system under study. Since such an instant of time is, in principle, a per-

fectly measurable quantity it seems natural to try to incorporate the concept of a time

observable into the quantum formalism.

However, this is not an easy task. The standard quantum formalism associates measur-

able quantities with self-adjoint operators acting on the Hilbert space of physical states,

and postulates that the probability distribution of the outcomes of any well-designed mea-

suring apparatus can be obtained in terms of the orthogonal spectral decomposition of the

corresponding self-adjoint operator, with no explicit dependence on the particular proper-

ties of the measuring device. Let us concentrate on the problem of finding a suitable time

operator which is usually accomplished via the correspondence principle, starting from the

corresponding classical expressions and quantizing by using certain specific quantization

rules.

Given the Hamiltonian H(q, p) of a conservative classical system, expressed in terms

of canonical variables (q, p), one can always make a canonical transformation to new

canonical variables (H, T ), where H is the Hamiltonian of the system and T its conjugate

variable, which satisfies Hamilton’s equation[20, 21]

dT

dt
= {H, T} = 1 (1.1)

{H, T} denoting the Poisson bracket of H and T . The important point is that the above

equation clearly reflects that the canonical variable T is nothing but the interval of time.
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Thus the next step would be to take advantage of this desirable fact and translate the

above formulation to the quantum framework. This can be easily accomplished by means

of the canonical quantization method [22], which basically states that the classical for-

mulation remains formally valid in the quantum domain with the substitution of Poisson

brackets by commutators, {H, T} → 1/ih̄[Ĥ, T̂ ], and interpreting the dynamical variables

as self-adjoint operators in the Heisenberg picture. Then, based on the correspondence

principle and the canonical quantization method, one is led to look for a self-adjoint time

operator conjugate to the Hamiltonian,

[Ĥ, T̂ ] = ih̄ (1.2)

As can be easily verified, this commutation relation also holds true in the Schrödinger

picture, and has the additional desirable consequence that it implies the uncertainty

relation

∆H∆T ≥ 1/2|[Ĥ, T̂ ]| (1.3)

with ∆H and ∆T being the usual root-mean-square deviations of the corresponding dy-

namical variables. Unfortunately no such time operator exists. As remarked by Pauli,

the existence of a self-adjoint operator satisfying the above commutation relation is in-

compatible with the semibounded character of the Hamiltonian spectrum [11, 12].

The lack of a proper time observable has a number of consequences [23]. In particular,

the time-energy uncertainty relation has remained unclear over the years. This is so

basically because, contrary to what happens with the well-known position-momentum

uncertainty relation, there exists no unique way to put in a quantitative setting what is

really meant by the time spread ∆T . In fact the consequences derived from incorrect

application of the time-energy uncertainty relation have led to a great deal of confusion.

As stated earlier, according to Pauli’s argument, because of the semibounded character

of the energy spectrum, there exists no self-adjoint operator conjugate to the Hamiltonian,

i.e., satisfying the commutation relation (1.2). The same negative conclusion was found by

Allcock [13] using a somewhat different argument based on the time-translation property

of the arrival time concept.

If {|T 〉} denotes a set of measurement eigenstates for the arrival time at a given spatial

point of a particle in the quantum state |ψ〉, then, according to the standard quantum
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formalism, the probability amplitude for the arrival time at the instant t = T would be

given by ψ(T ) = 〈T |ψ〉. If one translates the state of the system forward through time

by an amount τ , i.e., |ψ〉 → |ψ′〉 = exp(−iĤτ/h̄)|ψ〉, then it seems natural to expect the

probability amplitude to transform according to ψ(T ) → ψ ′(T ) = ψ(T + τ). That is,

〈T |ψ′〉 = 〈T + τ |ψ〉 or (1.4)

〈T |exp(−iĤτ/h̄)|ψ〉 = 〈T + τ |ψ〉 (1.5)

Since this transformation property must be true for any state vector |ψ〉, it follows that

the measurement eigenstates {|T 〉} must satisfy

|T + τ〉 = eiĤτ/h̄|T 〉 (1.6)

which reflects the fact that, under a translation backward in time by an amount τ , any

measurement eigenstate corresponding to arrival time at the instant t = T transforms

into another measurement eigenstate, corresponding to an arrival time t = T + τ . Based

on general grounds, Allcock showed that measurement eigenstates with such a desirable

property cannot be orthogonal, which implies that it is not possible to construct the

corresponding self-adjoint arrival-time operator. It is not difficult to see that this nega-

tive conclusion can be traced back again to the semi-infinite nature of the Hamiltonian

spectrum. To this end one can consider the following three statements [15].

(i) There exists a self-adjoint operator T̂ conjugate to the Hamiltonian Ĥ, i.e., satis-

fying [Ĥ, T̂ ] = ih̄.

(ii) There exists a self-adjoint operator T̂ , whose (orthonormal and complete) set of

eigenstates {|T 〉} transforms under time-translations as eiĤτ/h̄|T 〉 = |T + τ〉.

(iii) There exists a self-adjoint operator T̂ which generates unitary energy translations,

i.e., such that for any energy eigenstate |E〉 and any parameter ε with dimensions of

energy, it holds that

eiT̂ ε/h̄|E〉 = |E − ε〉, (1.7)
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where the operator T̂ is assumed to be defined onto the whole Hilbert space spanned by

the Hamiltonian eigenstates. It is not difficult to see that these statements are in fact

equivalent. Indeed, if (i) is true, then, by induction, one has

[Ĥn, T̂ ] = inh̄Ĥn−1, n ≥ 1, (1.8)

where Ĥ0 ≡ 1. Of course the validity of Eq.(1.8) rests on the reasonable assumption that

the Hamiltonian is well behaved enough so as to guarantee the existence of all its higher

integer powers. Since it also holds that [Ĥn, T̂ ] = 0 for n = 0, then, multiplying Eq.(1.8)

by (iτ/h̄)n/n! (τ being an arbitrary parameter with dimension of time) and summing

from n = 0 to n = ∞, one finds

[eiĤτ/h̄, T̂ ] = −τeiĤτ/h̄. (1.9)

If {|T 〉} denotes a complete and orthonormal set of eigenstates of T̂ , then, according to

Eq.(1.9), it holds that

T̂ eiĤτ/h̄|T 〉 = (T + τ)eiĤτ/h̄|T 〉, (1.10)

which after suitable choice of normalization and phase leads to statement (ii). Conversely,

if (ii) is true for any eigenstate |T 〉 and any parameter τ , then one can repeat the same

steps backward to reach (i). On the other hand, it can be readily seen that statement (i)

also implies statement (iii). Indeed, if (i) holds, one has by induction that

[Ĥ, T̂ n] = inh̄T̂ n−1, n ≥ 0, (1.11)

where T̂ 0 ≡ 1, which implies that, for any parameter ε with dimensions of energy,

[Ĥ, eiT̂ ε/h̄] = −εeiT̂ ε/h̄. (1.12)

Therefore, according to Eq.(1.12) any energy eigenstate |E〉 will satisfy

ĤeiT̂ ε/h̄|E〉 = (E − ε)eiT̂ ε/h̄|E〉, (1.13)

from which after proper normalization follows (iii). An analogous reasoning can be re-

peated from (iii) to (i), which shows the equivalence among the above three statements.

Now, since (iii) is obviously incompatible with a semibounded Hamiltonian spectrum, it

follows that it is not possible to find a self-adjoint arrival time operator satisfying the

desirable conditions (i) or (ii).
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1.4 Towards a probability distribution of arrival time

In recent years there has been an upsurge of interest in understanding theoretically the

concept of tunneling times, decay times, dwell times, delay times, arrival times or jump

times and also in measuring these time quantities in quantum theory. The simplest

problem involving time as a dynamical variable is that concerned with the time of arrival of

a free particle at a given spatial point. Consider the following experimental arrangement.

A particle moves in one dimension, along the x axis. A detector is placed in the position

x = X. Let T be the time at which the particle is detected, which we denote as the “time

of arrival” of the particle at X. Can we predict T from the knowledge of the initial state

of the particle ?

In classical mechanics, the answer is simple. Let x(t; x0, p0) be the general solution

of the equations of motion corresponding to initial position and momentum x0 and p0 at

t = 0. We obtain the time of arrival T as follows. We invert the function x = x(t; x0, p0)

with respect to t, obtaining the function t(x; x0, p0). The time of arrival T at X of a

particle with initial data x0 and p0 is then T = t(X; x0, p0)

In quantum mechanics, the problem is harder where the state of the centre of mass-

motion of an elementary particle (say, a neutron, or of a composite atom) does not in

general specify its position precisely but rather a probability distribution for finding it

at any particular point in space. In the same vein, one might expect from theory not

a prediction of a precise arrival time but rather a distribution of measured arrival times

given only the state in which the particle was prepared. More precisely, let Π(T )dT be the

probability that the particle is detected at detector location X within the time interval

T and T + dT . Thus
∫ T2
T1

Π(T )dT is the probability that the particle is detected between

the time T1 and the time T2. How can we compute Π(T ) from the quantum state, e.g.,

from the particle’s wave function ψ(x) at t = 0 ? This is not just an academic question

because the arrival time is a perfectly measurable quantity whose probability distribution

can, in principle, be experimentally measured by simply placing a detector at a fixed

position and noting the time at which it “clicks”. Nevertheless, the objective to find a

proper arrival time distribution Π(T ) within the framework of quantum mechanics has

been carried out only partially since the different distributions proposed are still subject
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to discussion, interpretation, and controversy, even for this simplest one dimensional, free

motion case.

There are claims that the arrival time of a quantum particle cannot be precisely mea-

sured and that theory is unable to define consistently such a quantity. One of the first

objections was obviously due to Pauli, who stated that there cannot be a self-adjoint time

operator conjugate to a Hamiltonian bounded from below. Despite this, many researchers

have evidently not been discouraged from seeking an expression for the arrival time dis-

tribution within a consistent theoretical framework. Transit, passage, or arrival times

have been invoked sporadically, usually in vague terms, since the early days of quantum

mechanics (e.g. by Bohr in his discussion in Como in 1927 of the time-energy uncertainty

principle [24]). An important milestone in the theoretical investigation of the time of

arrival in quantum mechanics was the publication of three thorough papers by Allcock in

1969 [13]. He was apparently the first to pay specific attention to the arrival time rather

than the more abstract question of finding time operators conjugate to the Hamiltonian,

which had already been discussed in earlier works, in particular in [11, 12, 23], frequently

in connection with the uncertainty principle. Although Allcock managed to elude Pauli’s

theorem by considering a quantum particle emitted by a source and hence described by

positive and negative energy components, he ultimately concluded that wave mechanics

cannot accommodate an exact and ideal (apparatus independent) arrival time concept.

After the publication of Allcock’s papers Razavi attempted to circumvent the difficul-

ties by looking at self-adjoint functions of time rather than the time operator itself [25],

and Wigner stated without detailed discussions, in a footnote of a paper on time-energy

uncertainty [26], that he did not share Allcock’s pessimism. A key result was due to

Kijowski [27] in 1974, who, instead of starting with the time operator, introduced an

arrival-time distribution by imposing a number of conditions motivated by the classical

mechanical case. This work was re-examined by Werner [28] in the light of a theory of

“ideal screen observables” that emphasizes the covariance of the distribution under time

translations and overcomes Pauli’s objection by admitting non-self-adjoint operators in

the framework of positive operator valued measures (POVMs). One of the earlier at-

tempts to define a time-of-arrival operator was due to Aharonov and Bohm [23] from

which one can derive the Kijowski’s distribution. The relation to time observables and
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POVMs was also discussed by Holevo [29]. On the other hand, the discussion of Misra

and Sudarshan of the quantum Zeno effect [30], and the “consistent histories” analyses of

Yamada and Takaji [31] supported the pessimistic conclusion of Allcock. In the last ten

years there has been considerable increase of activity that can be divided into theories

based on renewal equations [32], trajectory models [33, 34], measurement models (toy

models [14, 35], absorber models [36, 37], models of decoherence [38]), and construction

of time operators or POVMs [15, 16, 39] related with Kijowski’s distribution. A common

theme is that classical mechanics, deterministic or stochastic, is always a fundamental

reference on which all of these approaches are based.

What are the difficulties and why is there such a variety of approaches ? First, a

closer look at time variables reveals that they do not share all the properties of ordinary

observables, even in classical mechanics [40]. For example, if at time ‘t’ a particle is

detected at location X, then we can say with certainty that at the same time ‘t’, the

particle was not at any other location X ′. However, if we turn on a detector located at

position ‘x’, and detect a particle at time T, then it is quite possible that this particle

might also have been detected at any number of other times T ′. In classical deterministic

dynamics, the continuous trajectory of a point particle moving in 1D intersects a given

point either from one side or the other. This implies being instantaneously at a definite

point with momentum of definite sign. But the quantum operators associated with these

two concepts do not commute. Similarly, the probability to find a particle at t=T is

generally not independent of the probability to find the particle at some other time t=T ′,

i.e., the projectors for being in a region of space at different times do not commute [40, 41].

Actually these difficulties make the problem of arrival time more, not less interesting. The

variety of approaches may reflect different quantum versions of the same classical question

and it is of course important to determine which are relevant, and in what circumstances.

Having discussed the general status of time within the framework of quantum mechan-

ics, and the difficulties encountered in treating time as an observable, we will henceforth

concentrate on a particular approach towards studying the arrival time problem. There

is no unique prescription to calculate the arrival time probability distribution in standard

quantum theory. In this thesis we shall proceed by adopting the “probability current den-
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sity approach” [33, 36, 42, 43]. An important goal of this thesis will be to throw some light

on possible experimental manifestations of our investigations. This thesis contains mainly

the theoretical study of the arrival time distribution and the time-dependent probability

of arrival at particular locations for quantum wave packets evolving under different kinds

of potentials. The important implications obtained from the dynamical evolution of the

wave packets under these potentials are discussed.

The thesis is organised as follows. In Chapter2, we discuss the probability current

density approach in calculating the arrival time distribution for free particles. The prob-

ability current is interpreted as the streamlines of conserved flux and has been used in

the quantum mechanical predictions of arrival/transit time distributions. It can be shown

that in the non-relativistic quantum mechanics the form of the probability current is not

unique which leads an ambiguity [34] in the arrival time distribution. The probability

current can be uniquely fixed if one starts from a relativistic quantum wave equation and

finally this uniqueness will also be preserved in the non-relativistic limit of the relevant

relativistic equation [43]. A novel spin dependent effect on the arrival time distribution

for free particles is shown by demonstrating the uniqueness of the conserved probability

current in the non-relativistic limit of Dirac equation. The mean arrival time is computed

using the modulus of the unique (spin-dependent) probability current density for spin-1/2

free particles associated with a propagating Gaussian wave packet. This spin-dependent

effect highlights the feature that the spin of a particle is an intrinsic property and is

not contingent on the presence of an external field. We also discuss the possibility of

an experimentally realizable scheme which can test any postulated quantum mechanical

approach for calculating the arrival time distribution.

In Chapter3, we investigate the classical limit of arrival time defined through the prob-

ability current in the context of classical limit problem of quantum mechanics. Here for

the purpose of illustration we consider the evolution of a quantum free particle repre-

sented by a Gaussian wave packet. We formulate the classical analogue of the arrival time

distribution for an ensemble of free particles represented by a phase space distribution

function evolving under the classical Liouville’s equation. The expression for classical

probability current constructed by us matches exactly with the quantum probability cur-

rent density only when the position and momentum spread of the classical phase space
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distribution satisfy the minimum uncertainty condition. We note that the uncertainty

condition is not a stringent requirement for the case of the initial classical distribution.

Thus the classical arrival time distribution JC(X, t) will in general be different from the

quantum distribution JQ(X, t) if we do not impose the minimum uncertainty restriction

on the initial distribution. In the present example that we construct, the quantum re-

sults for the probability current and through it the arrival time distribution, approaches

smoothly to the classical result in the large mass limit. Our outlook is concerned about an

approach to test the quantitative equivalence between the classical statistical prediction

and the prediction obtained in the macroscopic limit of quantum mechanics. What we see

is that the mean time of arrival of a freely moving quantum particle computed through

the probability current depends on the mass of the particle even if its group velocity is

fixed. The predicted mass dependence of mean arrival time is, in principle, amenable for

experimental verification, and is a clear signature of the probability current approach to

time in quantum mechanics [33, 36, 42, 43].

In Chapter4, we study the free fall of quantum wave packets under the gravitational

potential. A gedanken quantum analogue of Galileo’s leaning tower experiment is revis-

ited. The position probability density and the arrival time distribution for the particle

calculated through probability current density exhibits mass dependence. The observable

position probability and the mean time (computed through the quantum probability cur-

rent) taken by the freely falling particle to arrive at a particular location are also shown

to be mass dependent. Our results of mass-dependence of these observable quantities

indicate the manifest violation of a particular form of the quantum analogue of the weak

equivalence principle [44]. The variation of the detection probability with mass disap-

pears in the limit of large mass of the freely falling particles, as is expected for classical

objects. This saturation of the detection probability is also reflected in the mean arrival

time distribution defined through the quantum probability current, which approaches the

classical result in a continuous manner with the increase of mass. We show that the

compatibility of the weak equivalence principle with quantum mechanics can be achieved

in the classical limit within this framework for particles falling freely under gravity. Our

results re-emphasize that the probability current approach for computation of the mean

arrival time of a quantum ensemble not only provides an unambiguous definition of ar-
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rival time at the quantum mechanical level, but also addresses the issue of obtaining the

proper classical limit of the time of flight of massive quantum particles. Subsequently,

we discuss a classical statistical analogue of the same problem where we see a similar

mass dependence in the position and arrival time distribution for a classical ensemble of

particles described by a phase space distribution function which evolves according to the

classical Liouville’s equation.

In Chapter5 we discuss a new quantum mechanical effect which occurs in the time

dependent reflection/transmission probabilities for a propagating Gaussian wave packet

which encounters localised time-dependent rectangular potential barriers. We analyze

the counter intuitive enhancement of probabilities that takes place as a result of barrier

perturbation. By reducing the height of the barrier to zero in a short span of time

during which there is a significant overlap of it with the wave packet, one sees that the

reflection probability is larger compared to the case of reflection from a static barrier for

a small but finite interval of time. Other cases of time dependent barriers with oscillating

height and width can be considered to lead to superarrivals in the reflected as well as

transmitted probabilities. We further show that in superarrivals for both the reflection

and transmission case the wave function plays the role of a field or carrier through which

information is transmitted. Information about barrier perturbation, or change in the

boundary conditions, propagates across the wave function and then reaches the detector

with a finite speed (signal velocity, ve) which is also proportional to the rate at which the

barrier height is reduced. We find the magnitude of superarrivals to be proportional to the

rate of reduction of the potential barrier. Next, we present a new manifestation of wave-

particle duality in the context of the phenomenon of superarrivals where we argue that

both classical wave-like and classical particle-like properties can be exhibited in the same

gadenken experimental set-up for obtaining superarrivals through Schrödinger dynamics.

Up to Chapter5 we discuss several novel and interesting quantum effects. Two such

effects that could be highlighted are the spin dependent contribution to the arrival time

distribution of free particles, and the phenomenon of quantum superarrivals manifested

in the reflection and transmission probabilities of wave packets scattered from time de-

pendent potential barriers. The purpose of the Chapter6 is to obtain a clearer physical

insight into these results by invoking the Bohmian interpretation of quantum theory [19].
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It should be emphasized that though all our previous results are obtained within the

standard framework of quantum mechanics, here we strive towards a sounder pedagog-

ical footing in the context of Bohmian mechanics. This is especially true regarding the

use of the probability current density in calculating the arrival time distribution, as we

argue in section 6.2. Further, we see in section 6.3 that a clear understanding as to how

superarrivals originate is obtained with the help of the quantum potential of the Bohm

model. We compute the “particle trajectories” and derive a quantitative estimate of the

magnitude of superarrivals using the Bohmian interpretation of quantum mechanics to

have a deeper insight into the nature of superarrivals. A final summary of our work is

presented in Chapter7. Here we discuss the implications of our key results leading to

insights for future directions of study.



Chapter 2

Probability current density as the arrival time

distribution

We know from Born interpretation that the squared modulus of the wave functions

|ψ(x, t1)|2, |ψ(x, t2)|2... give the position probability distributions at different instants

t1, t2.... Now, the question that immediately arises is that if we fix the positions at

x=X1, X2..., can the functions |ψ(X1, t)|2, |ψ(X2, t)|2 ...give the time probability distri-

butions at different positions X1, X2...? It is well known that if at any instant t = ti,
∫+∞
−∞ |ψ(x, t = ti)|2d3x = 1, the probability of finding the particle anywhere at that instant

is unity. But if we fix the position at, say, x = X1 and t is varied, the value of the integral
∫∞
0 |ψ(x = X1, t)|2dt 6= 1. In this case what may be pictured is that at a given point, say,

X1 the relevant probability changes with time and this change of probability is governed

by the following continuity equation which suggests a “flow of probability”

∂

∂t
|ψ(x, t)|2 + ∇.J(x, t) = 0 (2.1)

where is the probability current density given by

J(x, t) =
ih̄

2m
(ψ∇ψ∗ − ψ∗∇ψ) (2.2)

Here we adopt the definition of arrival time distribution in terms of the quantum

probability current density J(x = X, t). Interpreting the equation of continuity in terms

of the flow of physical probability, the Born interpretation for the squared modulus of the

wave function and its time derivative suggest that the mean arrival time of the particles

16
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reaching a detector located at X may be written as

τ̄ =

∫∞
0 |J(x = X, t)|tdt
∫∞
0 |J(x = X, t)|dt (2.3)

However, we emphasize that the definition of the mean arrival time used in Eq.(2.3) is not

a uniquely derivable result within standard quantum mechanics. It should also be noted

that J(x, t) can be negative, hence one needs to take the modulus sign in order to use the

above definition.

2.1 Ambiguity of arrival time distribution in quantum mechan-

ics

Although the probability current density is interpreted as the streamlines of a conserved

flux and has been used in the quantum mechanical predictions of time distributions [33,

36, 42, 43, 45] such as the arrival time, tunneling and reflection times, it is easily seen

that in non-relativistic quantum mechanics the form of the probability current density

is not unique, a point which has been explored by a number of authors [34, 46, 47].

If we replace J by J′ in Eq.(2.1) where J′= J+δJ, with ∇.δJ=0, J′ satisfies the same

probability conservation as given by Eq.(2.1). Then this new current density J′ will

lead to a different distribution function for the arrival time [34]. Hence the arrival time

distribution in Schrödinger dynamics is not unique and the question arises how one can

uniquely fix the arrival time distribution via the quantum probability current in the regime

of non-relativistic quantum mechanics ?

In order to address the above question, we take a vital clue from the interesting result

Holland [48, 49] showed in the context of analysing the uniqueness of the Bohmian model

of quantum mechanics, viz. that the Dirac equation implies a unique expression for the

probability current density for spin 1/2 particles in the non-relativistic regime. In Section–

2.2 we highlight the feature that the uniqueness of the probability current density is a

generic consequence of any relativistic equation of quantum dynamics. In Section–2.3,

the particular case of the spin dependent probability current density as derived from the

Dirac equation is discussed. Subsequently, using the non-relativistic limit of the Dirac

current density, we compute the effect of spin on the arrival time distribution of free
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particles for an initial Gaussian wave packet.

2.2 Uniqueness of the probability current density for any rela-

tivistic wave equation

The probability current density obtained from any consistent relativistic quantum me-

chanical equation needs to satisfy a covariant form of the continuity equation of jµ where

the zeroth component (j0) of jµ is associated with the position probability density. If one

replaces jµ by j
µ

which is also conserved, i.e., ∂µj
µ

= 0 where j
µ

= jµ + aµ (aµ is an

arbitrary divergenceless 4-vector), then the zeroth component (j
0
) of j

µ
will have to be

the same as the position probability density given by j0. Hence it follows that a0 = 0.

Next, we consider this current as seen from another Lorentz frame. This is given by

j
µ′

= jµ + aµ′. Hence in this frame j
0′

= j0 + a0′, and again if the position probability

density has to remain unchanged, then one must have a0′ = 0. But we know that the

only 4-vector whose fourth component vanishes in all frames is the null vector. Thus

aµ = 0. It therefore follows that for any consistent relativistic quantum mechanical equa-

tion satisfying the covariant form of the continuity equation, the relativistic current is

uniquely fixed. Unique expressions for the conserved currents have been explicitly derived

by Holland [48, 49] for the Dirac equation, the Klein-Gordon equation, and also for the

coupled Maxwell-Dirac equations.

This uniqueness will also be preserved in the non-relativistic limit of the relevant

relativistic equation. Hence starting from any relativistic wave equation, one can calculate

the unique form of the current which can be used in the non-relativistic regime. Then

using the (normalized) modulus of the probability current density as the arrival time

distribution, if one calculates the mean arrival time, it can be used to empirically test

any relativistic wave equation, such as the relativistic Kemmer equation [50] for the

massive spin 0 and spin 1 bosons. Of late, a unique form of the probability current

density expression has been derived in the non-relativistic limit of the relativistic Kemmer

equation for spin-0 and spin-1 particles [51]. Although the general scheme we outline for

testing a relativistic quantum wave equation in terms of the arrival time distribution is

not contingent on any specific form of the relativistic wave equation, in the following
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detailed study we specifically use the Dirac equation for spin-1/2 particles.

2.3 A novel spin dependent effect on the arrival time distribu-

tion for free particles

The Dirac equation for a free particle is

ih̄
∂Ψ

∂t
=

(
h̄c

i
αi

∂

∂xi
+ βm0c

2

)
Ψ (2.4)

where

αi =

(
0 σi
σi 0

)
, β =

(
I 0

0 −I

)
,Ψ =

(
Ψ1

Ψ2

)

Ψ is a four component column matrix and σi are the Pauli matrices. Choosing a repre-

sentation where Ψ1 and Ψ2 are two component spinors, one gets two coupled equations

∂Ψ1

∂t
= −cσi

∂Ψ2

∂xi
− im0c

2

h̄
Ψ1 (2.5)

∂Ψ2

∂t
= −cσi

∂Ψ1

∂xi
+
im0c

2

h̄
Ψ2 (2.6)

Multiplying Eq.(2.5) by Ψ1
† from the left and multiplying again the hermitian conjugate

of Eq.(2.5) by Ψ1 from the right, then adding them one gets

∂

∂t
(Ψ1

†Ψ1) = −cΨ1
†σi

∂Ψ2

∂xi
− c

∂Ψ2
†

∂xi
σiΨ1 (2.7)

For positive energies, one can take Ψ2 ∝ exp(−iEt/h̄), where E is the total energy. In

the non-relativistic limit, E ∼= m0c
2 and then we have E+m0c

2 ∼= 2m0c
2. Using this with

Eq.(2.6) one can write

Ψ2 = − ih̄c

(E +m0c2)
σi
∂Ψ1

∂xi
= − ih̄

2m0c
σi
∂Ψ1

∂xi
(2.8)

Putting this value of Ψ2 in Eq.(2.7), one gets

∂ρ

∂t
+ ∇.J = 0 (2.9)
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where J is the Dirac current in the non-relativistic limit that can be decomposed [48, 52]

into two terms as,

J = − ih̄

2m

[
Ψ1

†
σ(σ.∇)Ψ1 − (∇Ψ1

†.σ)σΨ1

]

= − ih̄

2m

[
Ψ1

†(∇Ψ1) − (∇Ψ1
†)Ψ1

]
+

h̄

2m
∇ × (Ψ1

†
σΨ1) (2.10)

and ρ = Ψ1
†Ψ1. Ψ1 is a two component spinor which can be written for a particle in a

spin eigenstate as

Ψ1 = ψ(x, t)χ ≡
[
R(x, t) exp

(
iS(x, t)

h̄

)]
χ (2.11)

Here ψ(x, t) is the Schrödinger wavefunction and χ is a spin eigenstate. Putting this form

of Ψ1 in the expression for current in Eq.(2.10) one gets

J =
1

m
ρ∇S +

1

m
(∇ρ× s) = Ji + Js (2.12)

with s = (h̄/2)χ†
σχ, ρ = R2 and χ†χ = 1. The first term (Ji) in Eq.(2.12) is independent

of spin, while the second term (Js) contains the contribution of the spin of a free particle

to the unique conserved vector current in the non-relativistic limit. Now, since the mean

arrival time given by Eq.(2.3) can be computed by using the unique expression for J in

Eq.(2.12), one can thus obtain a spin-dependent contribution to the expression for the

mean time of arrival for free particles. This could be experimentally measurable. On the

other hand, if one ignores the spin-dependent term one would obtain the mean arrival

time given by

τ̄i =

∫∞
0 |Ji|tdt∫∞
0 |Ji|dt

(2.13)

Now we will study the situations where the difference between the magnitudes of τ̄

and τ̄i is significant, thereby enhancing the feasibility of detecting the predicted spin-

dependent effect. To see the computed effects on the arrival time distribution we consider

a freely evolving Gaussian wave packet in the two separate cases corresponding to an

initially symmetric and an asymmetric wave packet respectively.

Case A: Symmetric wave packet
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Let us consider a Gaussian wave packet for a free spin 1/2 particle of mass m centered

at the point x = 0, y = 0,and z = 0. We choose the spin to be directed along the z-axis,

i.e., (s = 1
2
ẑ).

ψ(x, t = 0) =
1

(2πσ0
2)3/4

exp(ik.x)exp

(
− x2

4σ0
2

)
(2.14)

The time evolved wave function can be written as

ψ(x, t) = R(x, t)exp

[
iS(x, t)

h̄

]
(2.15)

where R(x, t) and S(x, t) are respectively given by

R(x, t) = (2πσ2)−3/4exp

[
−(x − ut)2

4σ2

]
(2.16)

S(x, t) = −3h̄

2
tan−1

(
h̄t

2mσ0
2

)
+mu.(x − 1

2
ut) +

(x − ut)2h̄2t

8mσ2
0σ

2
(2.17)

with (u = h̄k/m) the initial group velocity taken along the x-axis, and

σ = σ0

[
1 +

h̄2t2

4m2σ4
0

]1/2

(2.18)

The total current density can be calculated using Eq.(2.12) to be (we set m = 1, h̄=1)

J = ρ

[(
u+

(x− ut)t

4σ2
0σ

2

)
x̂ +

(
yt

4σ2
0σ

2

)
ŷ +

(
zt

4σ2
0σ

2

)
ẑ

]

+ ρ

[
−
(
y

2σ2

)
x̂ +

(x− ut)

2σ2
ŷ

]
= Ji + Js (2.19)

where the contribution of spin is contained in the second term only. We can now compute

τ̄ and τ̄i numerically by substituting Eq.(2.19) in Eqs.(2.3) and (2.13) respectively. It is

instructive to examine the behaviour of the contribution of spin-dependent term towards

the mean arrival time. For this purpose, we define a quantity

τ̄s =

∫∞
0 |Js|tdt∫∞
0 |Js|dt

(2.20)
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Figure 2.1: The spin-dependent contribution to the mean arrival time computed at the

point x=1, y=1, z=1 is plotted against the initial group velocity of the packet along the

x-axis.

We first compute τ̄s for a range of the initial velocity u in units of m=1, and h̄=1. We find

that the spin of a free particle contributes towards altering its mean arival time for a wide

range of initial velocities. This feature holds generally, except for very small magnitudes

of velocity where the spin-dependent contribution may be negligible depending on the

location of the detector vis-a-vis the direction of the initial group velocity u. This feature

is shown in Figure 2.1 where we plot the variation of τ̄s with u. The initial wave packet

is peaked at the origin with σ0 = 0.01. The detector position is chosen at (x = 1, y =

1, z = 1). We find that the difference of magnitude between τ̄ and τ̄i can be increased by

choosing asymmetric detector positions as well as asymmetric spread for the initial wave

packet, an example of which we will now discuss.

Case B: Asymmetric wave packet

We consider an initial free particle wave packet in three dimensions which is centered



Chapter 2. Probability current density as the arrival time distribution 23

at the point x = −x1, y = 0, z = 0.

ψ(x, y, z, t = 0) =
(

1

π3a2b2c2

)1/4

exp(ikx) exp

[
−(x + x1)

2

2a2

]

exp

[
−(y)2

2b2

]
exp

[
−(z)2

2c2

]
(2.21)

where a, b, c are positive constants. (Such a form for the wave function was considered

by Finkelstein [34] in the context of arrival time distributions.) The particle is given

an initial velocity in the x direction represented by u = h̄k/m. The time evolved wave

function is given by

ψ(x, y, z, t) =

(
a2b2c2

π3

)1/4
exp[i(kx− k2t/2)]

αβγ
exp

[
−(x + x1 − kt)2

2α2

]

exp

[
− y2

2β2

]
exp

[
− z2

2γ2

]
(2.22)

where α = (a2 + it)1/2; β = (b2 + it)1/2; γ = (c2 + it)1/2. Now writing the wave function

as ψ(x, y, z, t) = R(x, y, z, t) exp[iS(x, y, z, t)/h̄] one obtains

R(x, y, z, t) =

(
a2b2c2

π3

)1/4
1

(p2 + q2)1/4
exp

[
−a

2(x+ x1 − kt)2

2(a4 + t2)

]

exp

[
− b2y2

2(b4 + t2)

]
exp

[
− c2z2

2(c4 + t2)

]
(2.23)

and

S(x, y, z, t) = h̄kx− h̄k2t

2
− h̄

2
tan−1(q/p) +

h̄t(x + x1 − kt)2

2(a4 + t2)

+
h̄ty2

2(b4 + t2)
+

h̄tz2

2(c4 + t2)
(2.24)

with p = (a2b2c2−a2t2−b2t2−c2t2) and q = (a2b2t+a2c2t+b2c2t− t3). Considering again

a spin-1/2 particle with spin directed along z-axis (s = 1
2
ẑ), the total current density

defined in Eq.(2.12) is given by (in units of h̄ = 1 = m)

J = ρ

[(
u+

(x+ x1 − ut)t

(a4 + t2)

)
x̂ +

yt

(b4 + t2)
ŷ +

zt

(c4 + t2)
ẑ

]

+ρ

[
− b2y

(b4 + t2)
x̂ +

a2(x + x1 − ut)

(a4 + t2)
ŷ

]
= Ji + Js (2.25)



Chapter 2. Probability current density as the arrival time distribution 24

τi

u

τ

0.835

0.84

0.845

0.85

0.855

0.86

0.865

0 5000 10000 15000 20000

Figure 2.2: The mean arrival times τ̄ (upper curve) and τ̄i (lower curve) computed at the

point x = 1, y = 2, z = 1 are plotted against the initial group velocity of the packet along

the x-axis. and a = 0.001, b = 0.4, c = 0.01, x1 = 0.

where the second term represents the spin-dependent contribution to the current. We

now compute numerically the mean arrival times τ̄ and τ̄i. Figure 2.2 shows the variation

of τ̄ and τ̄i with the initial group velocities (u) of the wave packet. Here we choose the

parameters as x1 = 0, a = 0.001, b = 0.4, c = 0.01. Accordingly the mean arrival time is

computed at the position x = 1.0, y = 2.0, z = 1.0. One sees that the difference in the

magnitudes of τ̄ and τ̄i can suitably be enhanced by a judicious choice of asymmetric

initial spreads and detector positions.

Before concluding this chapter let us discuss about the possibility of an experimentally

realizable scheme [53] which can test any postulated quantum mechanical approach for

calculating the arrival time distribution. It is important to mention here that the usual

experimental analysis for measuring the “arrival time” or “time of flight” are usually done

semi-classically or classically [54]. Although a number of authors [13, 14] have pointed out

various conceptual and mathematical problematic aspects of time measurement, several

specific toy models [55] have also been proposed to investigate the feasibility of how
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actually the measurement of a time distribution can be performed in a way consistent

with the basic principles of quantum mechanics.

Since there are debates arising essentially if one considers how to directly measure time

in quantum mechanics, here we bypass this vexed issue by adopting the following strategy.

We consider a spin-rotator (SR) as a “quantum clock” where the basic quantity which

determines the actually observable results is the probability density function Π (φ) which

corresponds to the probability distribution of spin orientations along different directions

for the particles emerging from the SR, φ being the angle by which the spin orientation of a

spin-1/2 neutral particle (say, a neutron) is rotated from its initial spin polarised direction.

Note that this angle φ is determined by the transit time (t) within the SR. Hence the

probability density function Π (φ) stems from Π (t) which represents the distribution of

times over which the particles interact with the constant magnetic field while passing

through the SR. It is the evaluation of this quantity Π (t) which critically depends on

what quantum mechanical approach one adopts for calculating such a time distribution.

Let us consider an ensemble of spin 1/2 neutral particles, say, neutrons having magnetic

moment µ (with all their spins oriented along +x̂ -axis) passing through a spin-rotator

(SR) containing a constant magnetic field B directed along the +ẑ -axis. Next, we recall

that when a spin-polarised particle (say, a neutron) passes through the constant magnetic

field within a SR, its spin orientation is rotated by an angle φ with respect to the initial

spin polarised direction along +x̂ axis. This angle is fixed by the time (t) spent by the

particle within the SR, given by the well known quantum mechanical relation φ = 2ωt

where ω = µB/h̄ [56]. Now, if we consider a wavepacket associated with the neutron

beam passing through the spin-rotator then we should expect an arrival time distribution

Π(t) or a transit time distribution for the particles at the exit point of the spin-rotator.

This time distribution Π(t) is not uniquely defined in standard quantum mechanics and

one can adopt different approaches to calculate this time distribution. Based on this

time distribution Π(t) the particles emerging from the SR will have a distribution Π(φ)

of their spins oriented along different directions since the spin rotation is proportional to

the transit time.

Thus the emergent spin states get polarised along different directions and consequently

the final ensemble of particles emerging from the SR (at any time which is large enough
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so that by which all the particles of the ensemble, i.e., the total wave packet have passed

through the spin-rotator) is in a mixed state of spin states polarised along various di-

rections (φ) with different respective probabilities Π(φ). Now, for testing the scheme we

have outlined for calculating the probability density function Π (φ), one may consider the

measurement of a spin variable (on the particles emerging from the spin-rotator), say σ̂θ,

by a Stern-Gerlach device in which the inhomogeneous magnetic field is oriented along a

direction n̂ (θ) in the xy-plane making an angle θ with the initial spin-polarised direction

(+x̂ axis). Then the probabilities of finding the spin components (along + n̂ (θ) and its

opposite direction) can be calculated. The estimations of these probabilities crucially de-

pend on how one calculates the quantity Π (φ) whose evaluation, in turn, is contingent

on the procedure adopted for calculating the relevant time distribution Π (t) specifically,

which might be taken to be represented by the modulus of the probability current density

|J (x, t)| (suitably normalised) evaluated at the exit point of the spin-rotator.

2.4 Summary

To summarize, in this chapter we have elaborated the probability current density approach

in calculating the arrival time distribution for free particles. Although the probability cur-

rent is interpreted as the streamlines of conserved flux and has been used in the quantum

mechanical predictions of arrival/tunneling time distributions, it can be easily seen that in

the non-relativistic quantum mechanics the form of the probability current is not unique

which leads an ambiguity in the arrival time distribution. The probability current can

be uniquely fixed if one starts from a relativistic quantum wave equation and finally this

uniqueness will also be preserved in the non-relativistic limit of the relevant relativistic

equation. A novel spin dependent effect on the arrival time distribution for free parti-

cles was shown by demonstrating the uniqueness of the conserved probability current in

the non-relativistic limit of Dirac equation. The mean arrival time was computed using

the modulus of the unique (spin-dependent) probability current density for spin-1/2 free

particles associated with a propagating Gaussian wave packet. This spin-dependent ef-

fect highlights the feature that the spin of a particle is an intrinsic property and is not

contingent on the presence of an external field.
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One may also percieve the significance of such an effect as follows. Although the dy-

namical properties of free particles like position, momentum, and energy are measurable,

one cannot measure the static or innate particle properties such as charge without using

any external field. Nevertheless, the scheme we have discussed shows that the magnitude

of total spin can be measured without subjecting the particle to an external field. Another

implication of measuring the spin-dependent arrival times for free particles could be to

view this as implying an interesting difference between the magnitude of the total spin

of a particle and its other static properties such as mass and charge. This is because the

measurability of the property of spin of a free particle arises from the relativistic nature

of the dynamical evolution of the wave function where the relevant wave function is fun-

damentally 4-component (or, 2-component), even in the non relativistic limit. Now, since

the spin-dependent term which contributes significantly to the arrival time distribution

has been computed in the nonrelativistic regime by starting from the relativistic Dirac

equation, this provides a rather rare example of an empirically detectable manifestation

of a relativistic dynamical equation in the non relativistic regime. This effect cannot be

derived uniquely from the Schrödinger dynamics. A future line of investigation as an off-

shoot of this analysis could be to explore the possibilities of using the relativistic quantum

mechanical wave equations of particles with spins other than spin 1/2 (such as using the

relativistic Kemmer equation for spin 0 and spin 1 bosons) in order to compute the spin-

dependent terms in the probability current densities and their effects on the arrival time

distribution. Such a study seems worthwhile because then the arrival time distribution

may provide a means of checking the validity of the various suggested relativistic quantum

mechanical equations which have otherwise eluded any empirical verification. Finally, we

have discussed the possibility of an experimentally realizable scheme which can test any

postulated quantum mechanical approach for calculating the arrival time distribution.



Chapter 3

Classical limit of arrival time

3.1 Outlook

It is generally believed that a necessary requirement for the universal validity of quantum

mechanics is that its results in the macroscopic limit must agree with those of classical

mechanics, because the latter is well verified in the macroscopic domain. However, there

exist vexed problems regarding the connection between classical and quantum mechanics;

the question whether quantum mechanics in the macroscopic limit is completely equiva-

lent to classical mechanics remains the focal point of diverging view points. This is sharply

reflected in the various controversies persisting in the relevant literature [57]-[65]. The

traditional opinion against the observation of quantum effects for macroscopic objects is

that even if quantum mechanics was valid in the macroscopic world, it would be impos-

sible in practice to detect it. However, since there is no definite boundary between the

microscopic and the macroscopic worlds, one can always speculate the universal validity

of quantum mechanics. The nonobservability of quantum superposition of macroscopic

apparatus states is at the heart of the quantum measurement problem/the Schrödinger cat

paradox which presupposes universal validity of quantum mechanics even in the macro-

scopic world. Recently, quantum interference experiments [66] with large molecules have

gained importance to test whether there are limits to quantum physics and how far one

can push the experimental techniques to visualize quantum effects in the mesoscopic world

for objects of increasing size, mass, and complexity [67]. A general argument has been

recently given against the universal validity of the superposition principle [68].

A widely discussed approach of the classical limit, which is followed in many text books

28
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of quantum mechanics, is to derive the classical equations of motion from the Schrödinger

equation in the limit h̄ → 0. But the problem in this approach is that since h̄ is a

dimensional quantity one can not set it equal to zero and the notion that h̄ is “small”

has no absolute meaning because its value depends on the system of units. In the widely

studied WKB approximation method, a quantum mechanical wave function is expanded

in power series of h̄ around h̄ = 0. Then the series is truncated by neglecting higher powers

of h̄- subsequent calculations are based on this truncated series. This procedure can be

considered a semiclassical (but essentially nonclassical) computing procedure, useful in

many problems but should be considered distinct from the classical limit problem because

wave functions are, in general, highly non analytic in the neighbourhood of the limit point

h̄ = 0. Moreover, there are examples where the quantum mechanically predicted results

are independent of h̄. It is therefore not legitimate to make naïve statements like “every

classical system is essentially the h̄ = 0 limit of a quantum one”.

Another frequently discussed classical limit approach of quantum mechanics is that

to examine whether in the large principle quantum number limit (n → ∞) the quan-

tum mechanical ensemble represented by an energy eigenfunction is equivalent with the

corresponding classical ensemble. It is generally believed that if a wave function belongs

to the “classical domain” (in such a domain wave functions correspond to those energy

eigenvalues which are much greater than the energy difference between successive discrete

eigenstates, i .e., Ltn→∞(En+1 − En)/En → 0 so that in this domain the classical contin-

uum of energies is attained), the quantum probability density should approach its classical

counterpart. The important point to be emphasized is that even if the individual energy

eigenstates lead to the required classical results in the limit n→ ∞, their superpositions

do not necessarily satisfy this requirement [69]. Hence it is also not a universal criterion

that the classical dynamical behaviours emerges from an arbitrary quantum mechanical

wave function in the high-energy or n→ ∞ limit. Further, it has been demonstrated that

quantum nonlocality exhibited through the violation of Bell-type inequalities, persists, in

general, in the limit of a large number of constituents, or large quantum number [70].

Discussions of the classical limit of quantum mechanics [71] are often based on Ehren-

fest’s theorem [72], according to which under certain conditions (when the spread in

position of the wave packet is sufficiently small) the mean quantum evolution resembles
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classical dynamical behavior. It needs to be noted is that even if Ehrenfest’s theorem

holds good in a given situation, it does not suffice to guarantee complete equivalence with

classical mechanics. The fact that averages of the observed values of the dynamical quan-

tities pertaining to an ensemble of particles satisfy classical equations does not imply that

the behavior of an individual member of the ensemble conforms to classical dynamics—

vastly different ensembles can give rise to the same mean behavior. Ehrenfest’s theorem is

neither necessary nor sufficient to define the classical regime. Lack of sufficiency—that a

system may obey Ehrenfest’s theorem but not behave classically is proved by the example

of the harmonic oscillator where the quantum mechanical averages of the dynamical vari-

ables obey the classical equations of motion. Yet a quantum oscillator has discrete energy

levels, which make its thermodynamic properties quite different from those of the classical

oscillator. Lack of necessity—the system may behave classically even when Ehrenfest’s

theorem does not apply. The centroid of a clasical ensemble (the probability distribution

in phase space for a classical ensemble which satisfies the Liouville’s equation) need not

follow a classical trajectory if the width of the probability distribution is not negligible.

But the statistical ensemble description of classical dynamics does not pertain only to a

localized probability distribution.

Einstein [59] and Pauli [60] strongly advocated the tenet that in the macroscopic

limit, not only the localised wave functions but all physically admissible solutions of

the Schrödinger equation must lead to predictions equivalent to those obtainable from

classical mechanics; this is known as Einstein-Pauli tenet which has been the focal point

of vigorous debates. Such comparison between the two mechanics can be meaningful only

within the framework of the ensemble interpretation. Thus the classical limit problem

boils down to probing whether there is complete equivalence, in the macroscopic limit,

between the empirical predictions of classical and quantum mechanics with respect to the

properties of the same initial ensemble. This is the spirit which motivates the present

investigation. Therefore we should not expect to recover an individual classical trajectory

when we take the classical limit of quantum mechanics. Rather, we should expect the

probability distributions of quantum mechanics to become equivalent to the probability

distributions of an ensemble of classical trajectories.

For complete equivalence between classical mechanics and the macroscopic limit of
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quantum mechanics it is necessary that, in the classical limit, all the measurable proper-

ties of a quantum mechanical ensemble corresponding to any normalizable wave function

ψ(x, t) should be equally reproduced by the classical phase space formalism using a dis-

tribution function D(x, p, t) such that the following necessary conditions are satisfied in

the classical limit:

A. The time-development of D(x, p, t) is in accordance with the classical Liouville’s equa-

tion:
∂D

∂t
+ [D,H] = 0 (3.1)

B. The expectation value of an arbitrary operator Â(x̂, p̂) representing a certain quantum

mechanical observable should be equal to the mean value of the function A(x,p) which is

evaluated through phase space integration using D(x, p, t); A(x,p) is obtained by replacing

the operators x̂ and p̂ in the expression for Â(x̂, p̂) with scalar variables x and p:

∫ ∞

−∞

∫ ∞

−∞
dxdp A(x, p)D(x, p, t) =

∫ ∞

−∞
ψ∗Â(x̂, p̂)ψ (3.2)

C. The classical phase space distribution function D(x, p, t) must be positive definite.

It is well known that the uncertainty principle makes the concept of phase space in

quantum mechanics problematic. Because a particle cannot simultaneously have a well

defined position and momentum, one cannot define a probability that a particle has a

position x and a momentum p, i.e., one cannot define a true phase space probability

distribution for a quantum mechanical particle. Nevertheless, efforts have been made to

construct quantum mechanical analogues of a phase space density or the “phase space

formulation of quantum mechanics” as a mathematical tool to investigate the quantum

dynamics of various systems e.g. Wigner distribution function , Hasimi distribution func-

tion, Glauber-Sudarshan distribution function, etc [73].

3.2 Motivation

The current investigation [74] is concerned about a new approach to test the quantitative

equivalence between classical mechanical prediction and the prediction obtained in the

macroscopic limit of quantum mechanics. Here we formulate the classical phase space
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distribution in a way which is completely classical unlike the one that is called the quantum

phase space distribution function such as the Wigner distribution function. The latter

is essentially a quantum entity obtained by directly using the expression of the wave

function, and is constructed to reproduce the results of quantum mechanics, but it does

not satisfy the classical Liouville’s equation. So, the Wigner distribution function, not

being a positive definite quantity in general, does not provide the results of a classical

phase space evolution. In contrast we formulate a phase space distribution function

D(x, p, t) that is positive definite and also satisfies the classical Liouville’s equation. The

motivation for this work is to study the comparison between quantum mechanical results

and those obtained from a purely classical phase space description by formulating a proper

classical counterpart of the quantum ensemble. Here our focus is on the arrival time of

the free particles but one can also investigate the quantum-classical comparison for other

dynamical variables for particles in various types of potentials using the same approach.

We have seen from the discussion of first two chapters that there exists an extensive

literature on the treatment of arrival time distribution in quantum mechanics. A key

issue for any definition of time of arrival in quantum mechanics is to secure an acceptable

classical limit of the arrival time formulation. Here we will investigate aspects of the

quantum-to-classical transition of the arrival time for an ensemble of particles. Such a

study, if undertaken extensively, is not only expected to throw light on the comparitive

merits of different arrival time formulations, but also to be of relevance to the behaviour

of mesoscopic systems where a great deal of experimental activity is presently underway

[75]. To this end we formulate a classical analogue of the arrival time distribution for

free particles obtained via the quantum probability current. We consider an ensemble

of particles represented by a phase space density function which evolves freely under

classical Liouville’s equation. Our approach brings out the correspondence between the

quantum arrival time distribution defined through the probability current density and

its classical counterpart that we formulate. We will see that using the explicit mass-

dependence of the mean arrival time within this framework, it is possible to demonstrate

the smooth transition from the quantum to classical behaviour of the mean arrival time

by continuously increasing the mass of the particles.

As we discussed in Chapter 2, a consistent approach of formulating a definition for
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arrival time distribution is through the quantum probability current. A logically consis-

tent and unambiguous definition of the quantum probability current contains the spin

of a particle [48]. However, for the case of massive spin-0 particles it has been shown

recently by taking the non-relativistic limit of relativistic Kemmer equation that the

unique probability current is given by the Schrödinger current, and hence, the Schrödinger

current gives the unique probability current density or the unique arrival time distribu-

tion for spin-0 particles. In the present analysis we restrict our attention to massive

spin-0 particles only and for the current investigation we use the Schrödinger current

(J(x, t)= ih̄
2m

(Ψ∇Ψ∗−Ψ∗∇Ψ)) to define the arrival time distribution for free particles and

the mean arrival time of the particles reaching a detector located at x = X may be written

as

τ̄ =

∫∞
0 |J(x = X, t)|tdt
∫∞
0 |J(x = X, t)|dt (3.3)

Henceforth, for simplicity we shall restrict ourselves to only one spatial dimension.

One should keep in mind that the definition of the mean arrival time used in Eq.(3.3)

is not a uniquely derivable result within standard quantum mechanics. However, the

Bohmian interpretation [19] of quantum mechanics in terms of the causal trajectories of

individual particles implies the above expression for the mean arrival time in a unique and

rigorous way. It should also be noted that in ceratin situations J(X, t) can be negative

over some time interval provided the initial flux J(X, t = 0) is negative [76]. In order to

account for the back flow effect in such cases, the decomposition of J(X, t) into right and

left moving parts could be undertaken. However, our present analysis is carried out using

a simple example that is free from such complications.

3.3 Quantum-classical correspondence

Let us now consider a Gaussian wave packet representing a quantum free particle moving

in 1-D whose initial wave function Ψ(x, 0) and its Fourier transform Φ(p, 0) are respectively

given by

Ψ(x, 0) =
1

(2πσ0
2)1/4

√
1 + iC

e

{
ikx− x2

4σ0
2(1+iC)

}

(3.4)
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Φ(p, 0) =

(
2σ0

2

πh̄2

)1/4

e
−

{
σ0

2(p−p̄)2

h̄2 (1+iC)

}

(3.5)

where the group velocity of the wave packet u = h̄k/m = p̄/m. For generality we have

taken the initial Gaussian wave function Ψ(x, 0) which is not a minimum uncertainty state

(∆x∆p = (h̄/2)
√

1 + C2 > h̄/2), but which could represent a squeezed state [77] with

parameter C. The Schrödinger time evolved wave function Ψ(x, t), the quantum position

probability density ρQ(x, t) and the probability current density JQ(x, t) at a particular

location x are then respectively given by

Ψ(x, t) =
1

(2πσ0
2)1/4

√
1 + i(C + h̄t

2mσ0
2 )
eik(x− 1

2
ut) exp



−

(x− ut)2

4σ0
2
[
1 + i(C + h̄t

2mσ0
2 )
]



 (3.6)

ρQ(x, t) = |Ψ(x, t)|2 =
1

(2πσ0
2)1/2

√
1 + (C + h̄t

2mσ0
2 )2

exp



−

(x− ut)2

2σ0
2
[
1 + (C + h̄t

2mσ0
2 )2
]





(3.7)

JQ(x, t) = ρQ(x, t)



u+

h̄(C + h̄t
2mσ0

2 )(x− ut)

2mσ0
2
[
1 + (C + h̄t

2mσ0
2 )2
]



 (3.8)

In order to elucidate the classical counterpart of the quantum probability current, we

now construct a classical formulation of arrival time for an ensemble of free particles.

We take the initial phase space distribution function for the ensemble of particles as

a product of two Gaussian functions matching with the initial quantum position and

momentum distributions from Eqs.(3.4) and (3.5) as

D0(x0, p0, 0) = |Ψ(x0, 0)|2 |Φ(p0, 0)|2 =
1

πh̄
√

1 + C2
exp

{
− x2

0

2σ0
2(1 + C2)

− 2σ0
2(p0 − p̄)2

h̄2

}

(3.9)

where the variables x0 and p0 are the initial positions and momenta of the particles. Note

that our approach to compare the quantum and classical predictions is not contingent

to any particular initial form of the wave function. The key point of this scheme is to

choose the initial classical ensemble in such a way that it reproduces the initial quantum
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position and momentum distributions. Classically of course, there are other choices for

D0(x0, p0, 0). But in quantum mechanics, due to the uncertainty principle, given a wave

function ψ(x, t), the momentum space wave function φ(p, t) is automatically fixed by

the Fourier transform of ψ(x, t). In this way the position probability density |ψ|2 and

the momentum probability density |φ|2 are correlated in quantum mechanics. There is no

such restriction for the position and momentum densities in classical statistical mechanics.

But it is quite reasonable to take the initial classical phase space distribution exactly

matching with the initial quantum position and momentum probability densities in order

to compare the results obtained from the dynamical evolutions of classical and quantum

mechanics. This is precisely the motivation to take the initial phase space distribution

D0(x0, p0, 0) in a way given by Eq.(3.9). Now to obtain the final time evolved density

function D(x, p, t) we focus on the classical dynamics of a freely moving particle. The

Hamiltonian is H = p2/2m and the Hamilton’s equations are x = pt/m + x0 and p = p0

where the variables x0 and p0 are the initial position and momentum of the particle which

are respectively given by x0 = x− pt/m and p0 = p. Substituting these values of x0 and

p0 in the expression of D0(x0, p0, 0) we obtain the final time evolved distribution function

D(x, p, t). This is because here we are considering the free evolution of an ensemble of

particles whose initial positions (x0) and momenta (p0) are distributed according to the

initial density function D0(x0, p0, 0). The time evolved phase space distribution satisfying

the Liouville’s equation under free evolution [65] is then given by

D(x, p, t) =
1

πh̄
√

1 + C2
exp

{
− (x− pt

m
)2

2σ0
2(1 + C2)

− 2σ0
2(p− p̄)2

h̄2

}
(3.10)

It is instructive to write down the the Wigner distribution function which is calculated

from the time evolved wave function (Ψ(x, t)), and is given by

DW (x, p, t) =
1

πh̄

∫ ∞

−∞
Ψ∗(x + y, t)Ψ(x− y, t) exp{2ipy/h̄}dy (3.11)

By substituting the value of Ψ(x+ y, t) and Ψ(x− y, t) using Eq.(3.6) we obtain

DW (x, p, t) =
1

πh̄
exp

{
−2(p− p̄)2σ0

2

h̄2

}
exp

{
− [x− pt/m− 2C(p− p̄)σ0

2/h̄]2

2σ0
2

}
(3.12)
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Figure 3.1: The position probability densities ρQ(x, t) and ρC(x, t) are plotted for varying

mass of the particles (in atomic mass units) with σ0 = 10−5 cm, u = 103 cm/sec, C=10

and t=10−5 sec.

Note here that the Wigner function DW (x, p, t) is not identical with our classical phase

space distribution D(x, p, t). So, our formulated classical phase space distribution is com-

pletely classical unlike Wigner distribution function [73] which is essentially a quantum

entity obtained directly by using the expression of the wave function, and is constructed in

a way to reproduce the results of quantum mechanics. The Wigner distribution function,

not being a positive definite quantity in general, does not provide the results of a classical

phase space evolution because it does not satisfy the classical Liouville’s equation.

Here we consider a classical statistical ensemble of particles defined by the phase space

density function D(x, p, t) in one dimension. Then the position and momentum distribu-

tion functions are respectively ρC(x, t) =
∫
D(x, p, t)dp and ρC(p, t) =

∫
D(x, p, t)dx. The

classical position probability distribution for this ensemble is given by

ρC(x, t) =
∫
D(x, p, t)dp =

1

(2πσ0
2)1/2

√
1 + C2 + h̄2t2

4m2σ0
4

exp



−

(x− ut)2

2σ0
2(1 + C2 + h̄2t2

4m2σ0
4 )





(3.13)

All the density functions are assumed to be normalized and D(x, p, t) satisfies the
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classical Liouville’s equation given by

∂D(x, p, t)

∂t
+ ẋ

∂D(x, p, t)

∂x
+ ṗ

∂D(x, p, t)

∂p
= 0 (3.14)

Since for free particles ṗ = 0 and ẋ = p/m, we have

∂D(x, p, t)

∂t
+

p

m

∂D(x, p, t)

∂x
= 0 (3.15)

Integrating the above equation with respect to p one gets

∂ρC(x, t)

∂t
+

∂

∂x

[
1

m
p̄(x, t)ρC(x, t)

]
= 0 (3.16)

where p̄ =
∫
pD(x, p, t)dp/

∫
D(x, p, t)dp is the ensemble average of the momentum. Defin-

ing v̄(x, t) = p̄(x, t)/m as the average velocity, one obtains

∂ρC(x, t)

∂t
+

∂

∂x
JC(x, t) = 0 (3.17)

where JC(x, t) and v̄(x, t) represent the mean motion of the continuum matter at (x, t).

Eq.(3.17) is the equation of continuity for the continuous density function ρC(x, t) of a

statistical ensemble of particles. The expression for the classical probability current is

given by

JC(x, t) =
1

m

∫
pD(x, p, t)dp (3.18)

and is related to the mean velocity by JC(x, t) = ρC(x, t)v̄(x, t).

Now substituting the expression for the time evolved phase space distribution function

D(x, p, t) from Eq.(3.10) in Eq.(3.18) we get the expression for the current density or the

arrival time distribution at a particular detector location x=X for this classical ensemble

of free particles given by

JC(x, t) = ρC(x, t)



u+

(x− ut)h̄2t[
h̄2t2 + 4m2σ0

4(1 + C2)
]



 (3.19)

If we impose here the minimum uncertainty condition viz ., C = 0 then one can

check from Eqs.(3.7), (3.8), (3.13) and (3.19) that both ρQ(x, t)=ρC(x, t) and JQ(X, t) =

JC(X, t) hold, i.e., the classical and quantum probability currents are similar. Thus, if we

take the initial phase space distribution function for the classical ensemble of particles as
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Figure 3.2: The probability current densities JQ(x, t) and JC(x, t) are plotted for varying

mass of the particles (in atomic mass units) at a detector location X=10 cm with σ0 = 10−4

cm, u = 103 cm/sec, C=100.

a product of two Gaussian functions matching with the initial quantum position and mo-

mentum distributions then the classical arrival time distribution exactly matches with the

quantum one provided the minimum uncertainty relation is satisfied. But in general the

quantum and classical distribution functions are different when the minimum uncertainty

condition is not satisfied (C 6= 0).

Though JQ(X, t) and JC(X, t) are in general not equal for C 6= 0, the large mass limits

of both are the same. This is seen from Figures 3.1 and 3.2 where the probability distri-

butions and the currents are plotted respectively for different masses. It is apparent that

in the large mass limit quantum distributions reduce to the classical distributions. The

mass dependendence in the arrival time distributions and also in the position probability

densities (for both the quantum and classical case) arises from the spreading of the wave

packet.

We now compute the mean arrival time τ̄ by substituting the expressions for the

quantum current in Eq.(3.3). [One should note that though the integral in the numerator

of Eq.(3.3) formally diverges logarithmically, several techniques have been employed in

the literature [78] ensuring rapid fall off for the probability distributions asymptotically,

so that convergent results are obtained for the integrated arrival time. Here we have
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Figure 3.3: The mean arrival time τ̄ is plotted against the mass of the particles (in atomic

mass unit) at different detector locations X = 5.1 cm, X = 5.2 cm, and X = 5.3 cm. for

C=10, σ0 = 0.0001 cm, u = 10 cm/sec.

employed a simple strategy of taking a cut-off (t = T ) in the upper limit of the time

integral with T = (X + 3σT )/u where σT is the width of the wave packet at time T . In

other words, our computations of the arrival time are valid up to the 3σ level of spread

in the wave function.] It is instructive to examine the variation of mean arrival time with

the different parameters of the wave packet. In Figure 3 we have plotted the variation of

τ̄ with mass at different detector locations, keeping the group velocity u and initial width

σ0 fixed. One sees that the mean arrival time calulated by using the quantum current

JQ(X, t) as the arrival time distribution asymptotically approaches the classical result in

the limit of large mass.

3.4 Summary

To summarise, in this chapter we have investigated the classical limit of arrival time

defined through the probability current. Here for the purpose of illustration we have con-

sidered the evolution of a quantum free particle represented by a Gaussian wave packet.
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We have formulated the classical analogue of the arrival time distribution for an ensemble

of free particles represented by a phase space distribution function evolving under the

classical Liouville’s equation. The expression for classical probability current constructed

by us matches exactly with the quantum probability current density only when the posi-

tion and momentum spread of the classical phase space distribution satisfy the minimum

uncertainty condition. We have noted that the uncertainty condition is not a stringent

requirement for the case of the initial classical distribution. Thus the classical arrival time

distribution JC(X, t) will in general be different from the quantum distribution JQ(X, t)

if we do not impose the minimum uncertainty restriction on the initial distribution. We

have pointed out that this issue needs to be explored further in order to have a deeper un-

derstanding of the quantum-classical comparison of arrival time. However, in the example

that we have constructed, the quantum results for the probability current and through

it the arrival time distribution, approaches smoothly to the classical result in the large

mass limit. Also, we emphasize that it is worthwhile to investigate the classical limit of

arrival time distribution calculated from different theoretical approaches that have been

suggested in the literature [31]-[43]. Such studies, if undertaken extensively, are not only

expected to throw light on the comparitive merits of different arrival time formulations,

but could also be of relevance to the behaviour of mesoscopic systems where a great deal

of experimental activity is presently underway [75].

In the discussion of classical limit of quantum mechanics it is usually assumed that

the peak mean position of the wave packet moves according to the classical trajectory

derived from the Ehrenfest theorem. It could be argued though that one should not

expect to recover an individual classical trajectory when one takes the classical limit of

quantum mechanics. Rather, one should expect the probability distributions of quantum

mechanics to become equivalent to the probability distributions of an ensemble of clas-

sical trajectories. Our outlook is concerned about an approach to test the quantitative

equivalence between the classical statistical prediction and the prediction obtained in the

macroscopic limit of quantum mechanics. What we see is that the mean time of arrival

of a freely moving quantum particle computed through the probability current depends

on the mass of the particle even if its group velocity is fixed. Classically we know that

a point particle with uniform motion will reach a particular location at a time which is
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independent of the mass of the particle and depends only on its uniform velocity. So it

turns out that the characteristic of mean time in this framework is different from that

of mean position. The predicted mass dependence of mean arrival time is, in principle,

amenable for experimental verification, and is a clear signature of the probability current

approach to time in quantum mechanics.



Chapter 4

Wave packets under free fall

In this chapter we shall study the arrival time of quantum wave packets in free fall under

gravitational potential. The status of the gravitational equivalence principle for quantum

entities in the context of the classical limit of arrival time will be investigated by revisiting

a quantum analogue of Galileo’s leaning tower experiment [79]. We will see that the arrival

time distribution for the particle calculated through probability current density approach

and also the position probability density turn out to be mass dependent. The mean arrival

time of the freely falling particle computed through the quantum probability current

also exhibits mass dependence which vanishes in the limit of large mass. Though this

indicates a manifest violation of the weak equivalence principle at the quantum level, the

compatibility between the weak equivalence principle and quantum mechanics is recovered

in the classical limit of the latter within this framework. We shall also discuss a classical

statistical analogue of the same problem where we see a similar mass dependence on

the position and arrival time distribution for a classical ensemble of particles described

by a phase space distribution function which evolves according to the classical Liouville’s

equation. There seems to be curious parallelism between classical and quantum prediction.

Before going into the details let us have a closer look at the role of equivalence principle

in quantum mechanics.

4.1 Quantum mechanics and the equivalence principle

As a consequence of the equality of gravitational and inertial mass, all classical test

bodies fall with an equal acceleration independently of their mass or constituent in a

42
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gravitational field. Historically, the first experimental study to probe this feature was

conceived by Galileo with test bodies in free fall from the leaning tower of Pisa [80].

In modern times several tests have been performed with pendula or torsion balances

leading to extremely accurate confirmations of the equality of gravitational and inertial

masses [81]. Though most of these schemes consider only classical test bodies, there exist

indications about the validity of the equality of gravitational and intertial masses even for

quantum mechanical particles using the gravity-induced interference experiments [82, 83].

The universal character of the law of gravitation, however, has a much richer structure

than the above equality, as embodied in the principle of equivalence in its various versions.

There are three statements of the equivalence principle which are equivalent according

to classical physics but are logically distinct. Holland [44] emphasized the importance of

separating them clearly in order to discuss their quantum analogues: (i) Inertial mass is

equal to Gravitational mass; mi = mg = m. (ii) With respect to the mechanical motion of

particles, a state of rest in a sufficiently weak, homogeneous gravitational field is physically

indistinguishable from a state of uniform acceleration in a gravity-free space. A natural

quantum analogue of this statement is [84]: “The laws of physics are the same in a frame

with gravitational potential V = −mgz as in a corresponding frame lacking this potential

but having a uniform acceleration g instead”. This is also true [85] in quantum mechanics

because if ψ(z, t) be the wavefunction in the unaccelerated frame, obeying the free particle

Schrödinger equation then under the coordinate transformation z ′ = z + 1
2
gt2, t′ = t, the

transformed wave function φ(z′, t′) satisfies the same Schrödinger equation with an extra

gravitational potential V = −mgz′. The old and the new wavefunctions are related by

the following unitary transformation φ(z′, t′) = eiξ ψ(z, t), ξ = (m/h̄)(gt′z′ − g2t′3/6).

Predictions of the Schrödinger equation in a noninertial frame have been shown to be

experimentally observed [84]. (iii) All sufficiently small test bodies fall freely with an

equal acceleration independently of their mass or constituent in a gravitational field. To

obtain its quantum analogue this statement might be replaced by some principle such as

the following [44]: “The results of experiments in an external potential comprising just

a (sufficiently weak, homogeneous) gravitational field, as determined by the wavefunc-

tion, are independent of the mass of the system”. The status of this last version of the

equivalence principle for quantum mechanical entities is the subject of investigation of
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the present chapter. We shall henceforth call this version (iii) as the weak equivalence

principle of quantum mechanics (WEQ).

The compatibility between the equivalence principle and quantum mechanics is an

interesting issue which is yet to be completely settled. This issue was first elaborated

in detail by Greenberger [86]. Evidence supporting the violation of WEQ already exists

in interference phenomena associated with the gravitational potential in neutron and

atomic interferometry experiments [82, 83] where the observable interference patterns are

mass dependent. Further, at the theoretical level, on applying quantum mechanics to the

problem of a particle bound in an external gravitational potential it is seen that the radii,

frequencies and binding energy depend on the mass of the bound particle [85, 86, 87]. The

possibility of quantum violation of the equivalence principle is also discussed in a number

of other papers, for instance using neutrino mass oscillations in a gravitational potential

[88].

Recently, Davies [89] has provided a particular quantum mechanical treatment of

the violation of the equivalence principle for a quantum particle whose time of flight is

proposed to be measured by a model quantum clock [90]. This model quantum clock

actually measures the phase change of the wave function during the particle’s transit of

a specified spatial region. In this treatment Davies considered a variant of the simple

Galileo experiment, where particles of different mass are projected vertically in a uniform

gravitational field. Quantum particles are able to tunnel into the classically forbidden

region beyond the classical turning point and the tunneling depth depends on the mass.

One might therefore expect a small but significant mass-dependent “quantum delay” in

the return time. Such a delay would represent a violation of WEQ. Using the concept of

the Peres clock [90] the time of flight is calculated from the stationary state wave function

for the quantum particle moving in a gravitational potential. However, this violation is

not found far away from the classical turning point of the particle trajectory. Within

a distance of roughly one de Broglie wave length from the classical turning point there

were significant quantum corrections to the turn-around time, including the possibility of

a mass-dependent delay due to the penetration of the classically forbidden region by the

evanescent part of the wavefunction. Hence this quantum “smearing” of the equivalence

principle is restricted to distances within the normal position uncertainty of a quantum
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particle.

In a similar gedanken experimental scheme Viola and Onofrio [91] have studied the

free fall of a quantum test particle in a uniform gravitational field. Using Ehrenfest’s

theorem for obtaining the average time of flight for a test mass, they have shown that if

one takes gravitational mass to be equal to the inertial mass then the mean time taken

by the particle to traverse a distance H under free fall is 〈t〉 =
√

2H/g which is exactly

equal to the classical result. A rough estimate of the fluctuations around this mean value

was estimated using a semiclassical approach with the initial wave function taken as a

Schrödinger cat state. This fluctuation around the mean time of flight was shown to be

dependent on the mass of the particle.

In the present chapter, we study the issue of violation of WEQ from a somewhat

different perspective. We consider an ensemble of identical quantum particles represented

by a Gaussian wave packet which evolves under the gravitational potential. We first

compute the position detection probability for the particles projected upwards against

gravity around two different points; one around the classical turning point and another

around a region of the initial projection point after it returns back. We show an explicit

mass dependence of the position probability computed at both these points, thus indicating

violation of the weak equivalence principle (WEQ) not only at the turning point of the

classical trajectory, but also far away from it at the initial projection point. We then

make use of the quantum probability current in computing the mean arrival time for

a wave packet under free fall. We observe an explicit mass dependence of the mean

arrival time at an arbitrary detector location indicating again the manifest violation of

WEQ. Another issue of interest as discussed by Greenberger [87] is to understand whether

compatibility with the weak equivalence principle (WEQ) is recovered in the macroscopic

limit of quantum mechanics. We show that the quantum probability current approach of

obtaining the mean arrival time [33, 36, 42, 43] addresses this issue in a manner such that

the compatibility emerges smoothly in the limit of large mass of the wave packet.

In the next section we consider a Gaussian wave packet that is projected upwards

against gravity with a certain mean velocity from a point of projection. We compute

the position detection probabilities for atomic and molecular mass particles at the clas-

sical turning point of the gravitational potential, and also at the return to the point of
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projection. The mass dependence of the position probabilities resulting from the spread

of the wave packet is clearly exhibited. In Section 4.3 we consider the case when the

particles are dropped from a height with zero initial velocity. We obtain the mean arrival

time through the quantum probability current for an ensemble of such particles in free

fall reaching an arbitrary detector location. The observed mass dependence of the mean

arrival time vanishes smoothly in the limit of large mass giving the classical value of ar-

rival time. Compatibility with the weak equivalence principle is seen to be restored in the

macroscopic limit. In section 4.4 we study the classical statistical analogue of the wave

packet under free fall. We conclude with a brief summary of our results in Section 4.5

highlighting the key differences emanating from our approach compared to earlier works.

4.2 Mass dependence of position detection probabilities

A beam of quantum particles with an initial Gaussian distribution is considered to be

projected upwards against gravity. Subsequently, the position probability distribution

is calculated within an arbitrary region either around the classical turning point of the

potential V = mggz or away from the turning point around the region from where the

particles were projected. Such an observable quantity turns out to be mass dependent,

as seen below.

Let us consider particles of different inertial masses that are thrown upward against

gravity with the same initial mean position and mean velocity. The initial states of the

quantum particles can be represented by the Gaussian wave functions given by

ψj(z, t = 0) =
(
2πσ2

0

)−1/4
exp

(
ikjz

)
exp

(
− z2

4σ2
0

)
(4.1)

peaked at z = 0 with the initial group velocity u = h̄kj/mj
i where mj

i is the inertial

mass of the jth particle. The momentum space wave function φj(p, t = 0)is the Fourier

transform of ψj(z, t = 0) and is given by

φj(p, t = 0) =
(
2πσ2

p

)−1/4
exp

{
−(p− p̄)2

4σ2
p

}
(4.2)

where σp = h̄/2σ0
2 and p̄ = mj

iu. In order to perform an ideal free fall experiment for

quantum particles having different inertial masses m1
i , m

2
i ,.. etc. (with suffix i representing
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the inertial mass, and with m1
i 6= m2

i etc.), we have to specify a proper initial preparation

in such a way that any difference in the motion during the free fall must be ascribed to the

effect of gravity. Now, within the classical Hamilton picture the Galileian prescription for

initial positions and velocities fixes the ratio between the initial momenta in a well-defined

way, i.e., p1
0/p

2
0 = m1

i /m
2
i , etc. Following Ref.[91], we extend such a prescription to the

quantum case, of course keeping in mind that the Heisenberg uncertainty principle forbids

the simultaneous definition of the initial position and momentum for each particle. If ψ1

and ψ2 denote the initial wave functions for particles 1 and 2 in the Schrödinger picture,

the quantum analogue of the situation can be achieved by stipulating the conditions

〈ẑ〉ψ1
= 〈ẑ〉ψ2

= 0,
〈p̂z〉ψ1

m1
i

=
〈p̂z〉ψ2

m2
i

≡ u (4.3)

where 〈ẑ〉ψ and 〈p̂z〉ψ denote the expectation values for position and momentum operators,

respectively (confining to a one dimensional representation along the vertical z direction).

The probabilistic interpretation underlying quantum mechanics allows us only to speak

of probability distributions, for instance, characterized by mean initial conditions such as

Eq.(4.3), as opposed to the sharply-defined values for the relevant classical observables.

With the above prescription one can consider the time evolution of the initial state

under the potential V = mj
ggz, where V = mj

g is the gravitational mass of the j-th

particle. At any subsequent time t the Schrödinger time evolved wave function ψj (z, t)

is given by

ψj (z, t) =
(
2πs2

t

)−1/4
exp




(
z − ut+ (mj

g/m
j
i )

1
2
gt2
)2

4stσ0




× exp
[
i(mj

i/h̄)
{(
u− (mj

g/m
j
i )gt

)
(z − ut/2)

}]

× exp
[
i(mj

i/h̄)
{
−(mj

g/m
j
i )

2 1

6
g2t3

}]
(4.4)

where st = σ0

(
1 + ih̄t/2mj

iσ
2
0

)
. We see even if one takes mj

i = mj
g, i.e., equates the inertial

mass with the gravitational mass, the observable position probability density |ψj (z, t)|2

will have an explicit mass dependence

|ψj (z, t) |2 =
(
2πσ2

)−1/2
exp


−

(
z − ut+ 1

2
gt2
)2

2σ2


 (4.5)
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coming from the spread of the wave packet given by σ = σ0

(
1 + h̄2t2/4mj

i

2
σ4

0

)1/2
which

is mass dependent.

The peak of the wave packet follows the classical trajectory and it has a turning point

at the time t = t1 = u/g at z = zc = ut1. At a later time t = t2 = 2u/g, when the peak

of the wave packet comes back to its initial position z = 0, if we compute the probability

of finding particles P1(m
j
i ) within a very narrow region (−ε to + ε) around the initial

mean projection point z = 0 then that probability is found to be a function of mass and

is given by

P1

(
mj
i

)
=
∫ +ε

−ε
|ψ(z, t2)|2dz (4.6)

This effect of the mass dependence of the probability occurs essentially because the spread-

ing of the wave packet under gravitational potential is different for particles of different

masses. We explicitly calculate below this effect for different masses. A different set of

mass dependent probability P1

(
mj
i

)
may be obtained by taking a different value of the

initial width σ0 of the initial wave packet. In the table 4.1 it is shown numerically how

the “probability of finding the particles” P1

(
mj
i

)
around the mean initial projection point

(z=0) changes with the variation of mass for an initial Gaussian position distribution. We

note that for further increase in mass of the particle beyond that of a protein molecule,

the change in the probablity P1(m
j
i ) gets negligbly small, or in other words the mass

dependence of the probability gets saturated.

We then compute the probability of finding particles P2

(
mj
i

)
at t = t1 = u/g within

a very narrow detector region (−ε to + ε) around a point which is the classical turning

point z = zc = ut1 for the particle. P2

(
mj
i

)
will also be a function of mass and is given

by

P2(m
j
i ) =

∫ +ε

−ε
|ψ(z, t1)|2dx (4.7)

In the table 4.2 it is shown numerically how the “probability of finding the particles”

P2(m
j
i ) around the classical turning point changes with the variation of mass for a intial

Gaussian position distribution. As in the previous case, we again find that the mass-

dependence of the probablity P2(m
j
i ) for finding the particle gets saturated in the limit

of large mass.
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Table 4.1: Mass dependence of the probability at the initial projection point. We take

u = 103 cm/sec, σ0 = 10−3 cm, ε = σ0, t = t2 = 2u/g sec.

System Mass(mj
i ) Probability

in(a.m.u) P1(m
j
i )

H 1.00 0.0012

H2 2.00 0.0024

Li 6.94 0.0085

Be 9.01 0.0111

C 12.01 0.0148

Ag 107.87 0.1305

C60 720.00 0.5428

protein molecule 7.2 × 104 0.6826

heavier molecule 7.2 × 107 0.6826

Table 4.2: Mass dependence of the probability at the turning point. We take u = 103

cm/sec, σ0 = 10−3 cm, ε=σ0, t = t1 = u/g sec.

System Mass(mj
i ) Probability

in(a.m.u) P2(m
j
i )

H 1.00 0.0024

H2 2.00 0.0049

Li 6.94 0.0171

Be 9.01 0.0222

C 12.01 0.0296

Ag 107.87 0.2522

C60 720.00 0.7277

protein molecule 7.2 × 104 0.7978

heavier molecule 7.2 × 107 0.7978
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4.3 Mass dependence of mean arrival time and the classical limit

Now let us pose the problem in a different way. We consider the quantum particle prepared

in the initial state given by Eq.(4.1) satisfying Eq.(4.3) and with u = 0. The particle is

subjected to free fall under gravity. We then ask the question as to when does the

quantum particle reach a detector located at z = Z. In classical mechanics, a particle

follows a definite trajectory; hence the time at which a particle reaches a given location is

a well defined concept. On the other hand, in standard quantum mechanics, the meaning

of arrival time has remained rather obscure. As discussed in Chapter 1 there exists an

extensive literature on the treatment of arrival time distribution in quantum mechanics.

A consistent approach of formulating a definition for the arrival time distribution that we

have adopted throghout this thesis is through the quantum probability current [33, 36,

42, 43]. The quantum probability current if defined in an unambiguous manner contains

the spin of a particle, as was pointed out by Holland [48]. As shown in Chapter 2 using

the explicit example of a Gaussian wave packet, the spin-dependence of the probability

current leads to the spin-dependence of the mean arrival time for free particles [43].

However, for the case of massive spin-0 particles it has been shown recently by taking

the non-relativistic limit of Kemmer equation [50] that the unique probability current is

given by the Schrödinger current [51]. Hence, the Schrödinger probability current density

can be used to define an unambiguous arrival time distribution for spin-0 particles that

are relevant for the present analysis.

The expression for the Schrödinger probability current density J(Z, t) at the detector

location z = Z for the time evolved state is calculated using the initial state prepared

in the Gaussian form given by Eq.(4.1) and satisfying Eq.(4.3). The particle falls freely

under gravity along −ẑ direction from the initial peak position at z = 0 with u = 0 and

and J(Z, t) is given by

J(Z, t) = ρ(Z, t) v(Z, t) (4.8)

where

ρ(Z, t) = (2πσ2)−1/2 exp

[
−(Z − 1

2
gt2)2

2σ2

]
(4.9)
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Figure 4.1: The variation of mean arrival time with mass (in atomic mass unit) at a

detector location Z for an initial Gausssian position distribution. We take σ0 = 10−4 cm,

Z = 10−2 cm.

and

v(Z, t) =


gt+

h̄2t

4mj
i

2
σ2

0σ
2
(Z − gt2/2)


 (4.10)

Taking the modulus of the probability current density as determining the arrival time

distribution, the mean arrival time τ at a particular detector location is computed for

an ensemble of particles with an initial Gaussian position distribution falling freely under

gravity. Then this observable quantity τ is given by

τ
(
mj
i

)
=

∫∞
0 |J (Z, t)| t dt
∫∞
0 |J (Z, t)| dt (4.11)

Since σ = |st| = σ0

(
1 + h̄2t2/4mj

i

2
σ4

0

)1/2
is mass dependent, it is seen from Eqs.(4.8–

4.10) that J (Z, t) is mass-dependent. Hence the mean arrival time τ calculated by using

Eq.(4.11) for the Gaussian wave packets corresponding to different masses falling freely

under gravity is also mass dependent.

In Figure 4.1 we depict the variation with mass of the mean arrival time at a particular

detector location for an ensemble of particles under free fall. The initial conditions are

taken as 〈z〉0 = 0 and 〈p〉0 = 0, where 〈z〉0 and 〈p〉0 are the position and momentum

expectation values at t = 0. Note again that though the integral in the numerator of
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Eq.(4.11) formally diverges, as in the case of Eq.(3.3) of Chapter 3 here also we employ

the strategy of taking a cut-off (t = T ) in the upper limit of the time integral with

T =
√

2(Z + 3σT )/g where σT is the width of the wave packet at time T . Thus, our

computations of the arrival time are valid up to the 3σ level of spread in the wave function.

One can also see from Figure 4.1 that the mean arrival time τ asymptotically approaches

the classical result (mass independent) in the limit of large mass.

4.4 Classical statistical analogue of a wave packet under free fall

Now we discuss the behaviour of a classical ensemble of particles which evolves under a

homogeneous gravitational potential. Here we adopt the same strategy that was used in

discussing the classical limit problem of the arrival time of wave packets of free particles in

Chapter 3. To calculate classical propagation we choose an expression for the initial phase

space distribution (at time t=0) for the ensemble of particles as a product of two Gaussian

functions matching with the initial quantum position and momentum distributions from

Eq.(4.1) and (4.2) which is given by

D0(z0, p0, 0) = |ψj(z, 0)|2 |φj(p, 0)|2

=
1

(2πσ0
2)1/2

exp{− z2
0

2σ0
2
} 1

(2πσp2)1/2
exp{−(p0 − p̄)2

2σp2
} (4.12)

where σ0σp=h̄/2 and the variables z0 and p0 are the initial positions and momenta of the

particles. Classically of course, there are other choices for D0(z0, p0, 0). But in quantum

mechanics, due to the uncertainty principle, given a wave function ψj(z, 0), the momentum

space wave function φj(p, 0) is automatically fixed by the Fourier transform of ψj(x, 0).

There is no such restriction for the position and momentum densities in classical statistical

mechanics. But it is quite reasonable to take the initial classical phase space distribution

exactly matching with the initial quantum position and momentum probability densities

in order to compare the results obtained from the dynamical evolutions of classical and

quantum mechanics. This is precisely the motivation to take the initial phase space

distribution D0(z0, p0, 0) in a way given by Eq.(4.12). Now to obtain the final time

evolved density function D(z, p, t) we focus on the classical dynamics of a single particle

moving in a gravitational potential V = mgz. We take the inertial mass equal to the
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gravitational mass from the outset. The Hamiltonian is given by H = p2

2m
+ mgz. The

Hamilton’s equations are z = z0 + p0t
m

− 1
2
gt2 and p = p0 − mgt where the variables z0

and p0 are the initial position and momentum of the particle which are respectively given

by z0 = z − pt
m
− 1

2
gt2 and p0 = p + mgt. Substituting these values of z0 and p0 in the

expression of D0(z0, p0, 0) we obtain the final time evolved distribution function D(z, p, t).

This is because here we are considering the evolution of an ensemble of particles (under

gravity) whose initial positions (z0) and momenta (p0) are distributed according to the

initial density function D0(z0, p0, 0). The time evolved phase space distribution satisfying

the Liouville’s equation under V = mgz potential is then given by

D(z, p, t) =
1

(2πσ0
2)1/2

exp{−(z − pt
m
− 1

2
gt2)2

2σ0
2

} 1

(2πσp2)1/2
exp{−(p +mgt− p̄)2

2σp2
}

which satisfies the classical Liouville’s equation given by

∂D

∂t
= −{∂D

∂z

∂H

∂p
− ∂D

∂p

∂H

∂z
} (4.13)

The time evolved position probability density ρC(z, t) is given by

ρC(z, t) =
∫ ∞

−∞
D(z, p, t)dp

=
1

(2πσc2)1/2
exp{−(z − p̄t

m
+ 1

2
gt2)2

2σc2
} (4.14)

where σc
2 = (σ0

2 + σp
2t2/m2). If we take σ0σp=h̄/2 from the outset, i.e. the minimum

uncertainty condition then the above classical position probability density for the ensemble

will be the same as that obtained for a quantum particle moving in a uniform gravitational

potential. One can check that the classical current also matches with the quantum current

in this particular choice of the initial phase space distribution. It is curious to see the

parallelism between classical and quantum prediction although the two formalisms are so

different. It appears from the classical phase space description that the mass dependence

of the probability distributions comes from the uncertainty in position and momentum

because in single particle classical dynamics this mass dependence does not occur due to

the equivalence principle.
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4.5 Summary

To summarise, we have studied the free fall of quantum wave packets under gravitational

potential in the context of the equivalence principle by revisiting a gadanken quantum

analogue of Galileo’s leaning tower experiment. The position probability density and the

arrival time distribution for the particle calculated through probability current density

exhibits mass dependence. The observable position probability and the mean time (com-

puted through the quantum probability current) taken by the freely falling particle to

arrive at a particular location are also shown to be mass dependent. Our results of mass-

dependence of these observable quantities indicate the manifest violation of a particular

form of the quantum analogue of the weak equivalence principle. The variation of the

detection probability with mass disappears in the limit of large mass of the freely falling

particles, as is expected for classical objects. This saturation of the detection probabil-

ity is also reflected in the mean arrival time distribution defined through the quantum

probability current, which approaches the classical result in a continuous manner with

the increase of mass.

We have seen that the compatibility of the weak equivalence principle (WEQ) with

quantum mechanics can be achieved in the classical limit within this framework for parti-

cles falling freely under gravity. The probability current approach for computation of the

mean arrival time of a quantum ensemble not only provides an unambiguous definition

of arrival time at the quantum mechanical level, but also addresses the issue of obtaining

the proper classical limit of the time of flight of massive quantum particles. Finally, we

have discussed a classical statistical analogue of the same problem where we see a similar

mass dependence in the position and arrival time distribution for a classical ensemble of

particles described by a phase space distribution function which evolves according to the

classical Liouville’s equation.



Chapter 5

Quantum superarrivals

5.1 Overview

In recent years a number of interesting investigations have been reported on the wave-

packet dynamics [92, 93]. Schrödinger and others [94]-[97] discussed the connections

between the quantum and classical descriptions of nature by exhibiting explicit wave

packet evolutions to many familiar problems, including the cases of the free-particle, uni-

form acceleration (constant electric or gravitational field), and under harmonic oscillator

(forerunner of coherent and squeezed states) potential. The importance of the study of

localized, time-dependent solutions to bound state problems in quantum mechanics, spe-

cially the various interesting aspects of wave packet propagation in an infinite potential

well has been reviewed by Robinett [98]. The development of modern experimental tech-

niques, involving the laser-induced excitation of atomic Rydberg wave packets, including

the use of the “pump-probe” [99] or “phase modulation” [100] techniques to produce,

and then monitor the subsequent time-development of such highly excited states of atoms

and molecules led to widespread interest [98, 101] in the physics of wave packet dynamics

including the phenomenon of quantum wave packet revivals [102], fractional revivals [103]

and superrevivals [104] etc.

In the next section we shall elaborately discuss a curious effect on the reflection/

transmission probabilities (or the probabilities of arrival at the left and right of a barrier)

for a propagating wave packet which encounters a time-dependent rectangular potential

barrier, named as the phenomenon of superarrivals. A detailed description of superarrivals

will be provided by showing that if the barrier height is reduced while the wave packet

55
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is being scattered, the time-evolving probability of reflection is larger during a specific

interval of time in comparison to the reflection probability for a static barrier. It will

also be shown that this counterintuitive effect also occurs in the transmitted probability

provided a barrier is raised in the path of a freely propagating wave packet. The genesis

of the work of superarrivals is from the effect of a time-dependent boundary on a wave

packet associated with a particle in one dimensional infinite well where the particle is

considered to be localized within the interior of the box, far away from the walls (which

means that the wave function at the walls can be considered to be effectively zero) as was

first proposed by Greenberger [93]. We shall now discuss it in detail in order to motivate

our study in the next sections. For simplicity, we consider the walls of the box to be

infinitely high. If now, one wall of the box is moved, so that the box grows wider, or

narrower, the eigenfunctions of the Hamiltonian will grow or shrink accordingly, since the

wave function must vanish at the walls. The particle wave function must be expandable

in terms of these functions, and this will have two effects on the subsequent behaviour of

the particle.

First, as the walls expand, the eigenvalues of the Hamiltonian will change, and so the

term corresponding to exp(
∫
Edt/h̄) will produce a “dynamical” phase shift. But also,

because the centre of mass of each eigenfunction will shift, as it will still be in the middle

of the well, the wave function will acquire a phase representing the added momentum,

and this will be reflected in what Berry calls a “geometrical” phase shift [105]. These

two effects will affect the wave function of the particle, and even if the motion of the wall

is then reversed, to bring it back to its original position, the overall motion will leave

its imprint upon the wave function of the particle (it will experience a phase shift), even

though the particle has never been in the vicinity of the wall, nor felt any force. This is a

true non-local effect, utterly foreign to classical physics. Let us now see how this actually

occurs. For a particle in an infinite square well, whose width is L0, the Schrödinger

equation is

− h̄2

2m

∂2ψ

∂x2
+ V

(
x

L0

)
ψ = ih̄

∂ψ

∂t
, (5.1)

where the wave function is subject to the boundary condition

ψ(x = 0) = ψ(x = L0) = 0 (5.2)
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Then the normalized solutions are

ψn =

√
2

L0
Sin

nπx

L0
, En =

h̄2n2π2

2mL0
2 (5.3)

If now the width of the box is variable, so that L0 → L = L(t), then the Schrödinger

equation is unchanged, but the boundary condition, Eq.(5.2) becomes

ψ(x = 0) = ψ(x = L(t)) = 0 (5.4)

and so one must solve the same equation, subject to this new condition. Introducing in

place of the variables x, t, the new set of variables y, t′, where y = x/L(t), t′ = t, so that

∂

∂x
=

1

L

∂

∂y
and (5.5)

∂

∂t
=

∂

∂t′
− L̇

L
y
∂

∂y
. (5.6)

In terms of these new variables, the Schrödinger equation becomes

− h̄2

2mL2

∂2ψ

∂y2
+ ih̄

L̇

L
y
∂ψ

∂y
+ V (y)ψ = ih̄

∂ψ

∂t
, (5.7)

where we have set t′ = t. Substituting

ψ =
1√
L
ei(m/2h̄)LL̇y2u(y, t), (5.8)

the equation for u(y, t) becomes

− h̄2

2m

∂2u

∂y2
+
[
L2V (y) +

m

2
L3L̈y2

]
u = ih̄u̇L2 (5.9)

For simplicity, we restrict ourselves to the case of an infinite square well,

V (y) =

{
0, 0 ≤ y ≤ 1;

∞, elsewhere.

where the walls are expanded linearly (we choose the simplest case), L = L0 + αt, and

where α can be positive or negative. In this case, the term in brackets of Eq.(5.9) vanishes,

and the exact solutions, subject to the boundary condition, Eq.(5.4), are
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ψn(x, t) = φn(y, t) e
−i
∫
Endt/h̄, where (5.10)

φn(y, t) =

√
2

L
exp

(
imαLy2

2h̄

)
Sin(nπy), En =

h̄2n2π2

2mL2
(5.11)

The purpose of the “geometric” phase factor in this wave function is to keep track

of the momentum. If one wall is expanding at the rate L̇, then the average momentum

of the eigenfunction wave packet is mα/2, and the packet will have acquired an average

velocity α/2. One can calculate this directly, since

〈p〉 =
∫
ψn

∗

(
−ih̄ ∂

∂x

)
ψndx =

mα

2
=
mL̇

2
(5.12)

These wave functions possess a sort of orthogonality in the sense that

∫ L

0
ψn(x, t)

∗ψm(x, t)dx = δnm, (5.13)

for any t, and so one may make an expansion,

ψ(x, 0) =
∑

anψn(x, 0) and an =
∫ L0

0
ψn(x, 0)∗ψ(x, 0) (5.14)

and at arbitrary times one has

ψ(x, t) =
∑

anψn(x, t) (5.15)

even though the functions ψn are not “stationary” in the usual sense, since L = L(t). As

an example, Greenberger [93] took a Gaussian wave packet associated with the particle

as ψ0 = Ae−(x−b)2/γ2
where L0 ≥ b ≥ γ, so that the packet is much smaller than the

width of the well, and is located well away from the walls. Then one lets the wall expand

linearly, so that L = L0 + αt until time t1; then contracts it until time t2 = 2t1, so that

L = L1 − α(t − t1), then the wall will end up at the same width it started at. If one

calculates the final wave function ψ(x, t2) then it will be seen that the overall motion

of the walls leave its imprint upon the wavefunction of the particle even though the

particle has never been in the vicinity of the wall, nor felt any force. In the context of

the above theoretical study an experiment was done [106] using neutron interferometry
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to measure the phase shift arising from lateral confinement of a neutron beam passing

through a narrow slit system. The phase shift arises mainly from neutrons whose classical

trajectories do not touch the walls of the slits. In this respect, the non-locality of quantum

physics is apparent.

5.2 Wave packet dynamics under time-varying potential barri-

ers

Let us now discuss a curious effect on the reflection/transmission probabilities for a prop-

agating wave packet which encounters a time-dependent rectangular potential barrier.

The reflection/transmission probabilities for the scattering of wave packets by various

obstacles are usually considered from static or unperturbed potential barriers. Generally,

the time-independent (asymptotic) values of the reflection/transmission probabilities at-

tained after a complete time evolution are calculated. Here we discuss an interesting

effect that occurs during the time evolution of the wave packet. The dynamics of the

wave packet is studied in detail when the packet is scattered from a barrier whose height

is increased/decreased. It is seen that the time-dependent reflection/transmission proba-

bilities gradually increases with time and finally the time-independent asymptotic values

are reached after a sufficiently large time. An intermediate time interval is found dur-

ing which this time-evolving probability of reflection/transmission is enhanced compared

to the unperturbed case. To understand this counterintuitive phenomenon called su-

perarrivals [107] (which is quantum mechanical in origin) let us first sketch the general

description of the problem.

A time evolving gaussian wave packet strikes a potential barrier of height V0 and

width ω, a part of it is transmitted and a part is reflected. Now, when the Gaussian

packet is coming towards the barrier, once it overlaps sufficiently with the barrier, we

perturb the barrier in various ways and see what happens to the incident packet. The

reflected particles are registered by a detector placed either to the left (for reflection) or

to the right (for transmission) of the barrier. We first study the case of reflection. We

place the detector in the left at x = x′. Here we perturb the barrier by reducing its height
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Figure 5.1: Description of the problem

from V0 to 0 within a very short interval of time. We reduce the barrier height linearly

with time. The parameters of the barrier and the incident wave packet are so chosen

such that the reflection probability is very close to one for the unperturbed barrier. For

an unperturbed barrier the reflection probability for an initially localized wave packet

ψ(x, t = 0) is calculated by considering the wave packet as a superposition of plane waves

and by writing

|R0|2 =
∫

|φ(p)|2|R(p)|2dp (5.16)

where |R(p)|2 is the reflection probability corresponding to the plane wave component

exp(ipx) and φ(p) is the Fourier transform of the initial wave packet ψ(x, t = 0). Since

a wave packet evolves in time, |R0|2 defined by Eq.(5.16) denotes the time-independent

value of reflection probability pertaining to a wave packet, this value being attained in the

asymptotic limit (t∞) of the time evolution. Thus |R0|2 can be expressed in the following

form:

|R0|2 =
∫ x

′

−∞
|ψ(x, t∞)|2dx (5.17)

where ψ(x, t∞) is an asymptotic form of the wave packet attained by evolving from ψ(x, t =

0) and by being scattered from a rectangular potential barrier of finite height and width.
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Note that x′ lies at the left of the initial profile of the wave packet such that
∫ x′
−∞ |ψ(x, t =

0)|2dx is negligible. Equivalence between the expressions (5.16) and (5.17) in the limit of

large (compared to the time taken by the packet to get reflected from the barrier) t has

been checked numerically. At any instant before the constant value |R0|2 is attained, the

time evolving reflection probability in the region −∞ < x ≤ x′ is thus given by

|R(t)|2 =
∫ x

′

−∞
|ψ(x, t)|2dx (5.18)

Now, suppose that during the time evolution of this wave packet, the barrier is perturbed

by reducing its height to zero within a very short interval of time that is small compared

to the time taken by the reflection probability to attain its asymptotic value |R0|2. The

effects of this “sudden” perturbation on |R(t)|2 are computed. The salient features are

as follows: (a) A finite time interval is found during which |R(t)|2 shows an enhancement

( “superarrivals”) in the perturbed case even though the barrier height is reduced. This

time interval and the amount of enhancement depend on the rate at which the barrier

height is made zero. (b) It can be shown that the phenomenon of superarrivals is inher-

ently quantum mechanical by demonstrating that superarrivals disappear in the classical

treatment of the problem. (c) The origin of superarrivals may be understood by consid-

ering the wave function to act as a “field” through which a disturbance from the “kick”

provided by perturbing the barrier travels with a definite speed.

In order to demonstrate the above features we begin by writing the initial wave packet

(in the units of h̄ = 1 and m = 1/2)

ψ (x, t = 0) =
1

[
2π (σ0)

2
]1/4 exp

[
−(x− x0)

2

4σ2
0

+ ip0x

]
(5.19)

which describes a packet of width σ0 centered around x = x0 with its peak moving with

a group velocity vg = 2p0 = 〈p〉
m

towards a rectangular potential barrier. The point x0

is chosen such that ψ (x, t = 0) has a negligible overlap with the barrier. For computing

|R(t)|2 given by Eq.(5.18) the time dependent Schrodinger equation is solved by using

the numerical methods developed by Goldberg, Schey and Schwartz [108]. As a specific

example, the parameters can be choosen as x0 = −0.4, σ0 = 0.05/
√

2 and p0 = 50π.

The barrier is centered around xc = 0 with a width ω taken to be 0.016. For such a
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width, height of the barrier (V) before perturbation is chosen to be V = 2E, where E is

the expectation value of the energy of the wave packet given by p2
0 + 1

4
σ−2

0 . This choice

ensures that: (1) The reflection probability is close to 1 since we are interested only in

the reflection probability. (2) At the same time V is not too large . This ensures that the

reduction of the barrier height is not too fast.

|R(t)|2 is computed according to Eq.(5.18) by taking various values of x′ satisfying

the condition x′ ≤= x0 − 3σ0/
√

2. The computed evolution of |R(t)|2 corresponds to

the building up of reflected particles with time. More precisely, it means that a detector

located within the region −∞ < x < x′ measures |R(t)|2 by registering the reflected

particles arriving in that region up to various instants. First, we compute |R(t)|2 for the

wave packet scattered from a static barrier V = 2E. The relevant curve is shown in Figure

5.2 which tends towards a time-independent value which is the stationary state reflection

probability |R0|2 given by Eq.(5.16), or equivalently by Eq.(5.17). Next, we proceed to

study the consequence of reducing the barrier height from V = 2E to V = 0. The time

evolution of |R(t)|2 in this case is studied by varying the ways in which the barrier height

is reduced. If tp be the instant around which we start to reduce the barrier height, then

V = V0 for t < tp

V =
(tp + ε− t)

ε
V0 for tp < t < tp + ε

V = 0 for t > tp + ε

In the specific cases studied, the potential V goes to zero linearly within a switching

off time ε starting at time t = tp chosen to be 8 × 10−4 (note that numbers denoting the

various instants are in terms of time steps; for example, t = 8 × 10−4 corresponds to 400

time steps). Here ε � t0, t0 being the time required for |R(t)|2 to attain the asymptotic

value |R0|2. The short time span ε over which the perturbation takes place is given by

[tp, tp + ε]. tp is chosen such that at that instant the overlap of the wave packet with

the barrier is significant. Figure 5.3 shows the evolution of |R(t)|2 for various values of

ε. Varying ε signifies changing the time span over which the barrier height goes to zero

which in turn means different rates of reduction. Figure 5.2 reveals that

|Rp(t)|2 = |Rs(t)|2 t ≤ td (5.20)
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Figure 5.2: The reflection probability for particles reflected from a perturbed barrier is

plotted against time (solid line). The corresponding reflection probability for the static

barrier is shown by the dotted line.

|Rp(t)|2 > |Rs(t)|2 td < t ≤ tc (5.21)

|Rp(t)|2 < |Rs(t)|2 t > tc (5.22)

where tc is the instant when the two curves cross each other, and td is the time from

which the curve corresponding to the perturbed case starts deviating from that in the

unperturbed case. Here tc > td > tp.

As the barrier height is made zero, one does not expect at any time an increase in

the reflected particle flux compared to that in the unperturbed case. Nevertheless, the

inequality (5.21) shows that there is a finite time interval ∆t ≡ tc − td during which

the probability of finding reflected particles is more (superarrivals) in the perturbed case

than when the barrier is left unperturbed (see Figure 5.2). A detector placed in the region

x < x′ would therefore register more counts during this time interval ∆t even though the

barrier height had been reduced to zero prior to that.

In order to have a quantitative measure of superarrivals one can define the parameter η

given by

η =
Ip − Is
Is

(5.23)

where the quantities Ip and Is are defined with respect to ∆t during which superarrivals
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Figure 5.3: The top curve corresponds to the static case and reaches value 1 asymptot-

ically. |R(t)|2 for other curves correspond to various values of ε. The curve with the

lowest asymptotic value corresponds to the smallest value of ε chosen for this set. As one

increases ε, superarrivals are slowly wiped off.

occur

Ip =
∫

∆t
|Rp(t)|2 dt (5.24)

Is =
∫

∆t
|Rs(t)|2 dt (5.25)

We plot the variation of η with respect to ε for three different detector positions in

Figure 5.4. The results obtained from Figures 5.2–5.4 can be summarized as follows: (a)

There exists a finite time interval ∆t during which an increase in the reflection probability

(superarrivals) occurs for the perturbed cases compared to the unperturbed situation.

(b) Superarrivals are inherently nonclassical. (c) The magnitude of superarrivals η is

appreciable only in cases where the wave packet has some significant overlap with the

barrier during its switching off. Both η and ∆t (duration of superarrivals) fall off with

increasing ε. (d) Superarrivals given by η gradually reduce to zero upon decreasing the

barrier width, while keeping the initial barrier height V0 fixed.

The above example of superarrivals in the reflection probability when the barrier height

is brought down is not the only example of superarrivals with time dependent barriers.
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Figure 5.4: The magnitude of superarrivals η diminish with an increase in ε, the time

taken for barrier height reduction. This behaviour is seen for three different detector

positions x′= -0.4, -0.5 and -0.6 respectively.

Indeed, other cases of time dependent barriers with oscillating height and width can be

considered to lead to superarrivals in the reflected as well as transmitted probabilities. Let

us now consider the case when initially there is no barrier, and the wave packet is allowed

to propagate freely towards the right. A second detector placed far away at x′′ records the

time-dependent transmission probability Ts(t) (counting the transmitted particles up to

various instants of time). If a barrier is raised in the path of the wave packet, a portion of

it will be reflected back. We denote by Tp(t) the transmitted probability in this case. At

any instant before the asymptotic value of the transmission probability (= 1 since there

is no absorption) is attained, the time evolving transmission probability in the region

x′′ ≥ x ≥ ∞ is given by

|T (t)|2 =
∫ ∞

x′′
|ψ (x, t)|2 dx (5.26)

one can compute the values of Ts(t) and Tp(t) using the same method of numerically solv-

ing the time dependent Schrödinger equation as used in [107], which was first developed

in [108]. An example with the following values for the parameters has been studied [109]

(in units of h̄ = 1 and m = 1/2): x0 = −0.3, σ0 = 0.05/
√

2, xc = 0, w = 0.016, x′′ = 0.5

and tp = 8 × 10−4. It should be emphasized that the observation of the phenomenon of
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superarrivals does not hinge upon the choice of these particular values of the parameters.

Indeed, the quantitative dependence of superarrivals on the parameter values were shown

in the previous section. We choose one particular set of values here for the present exam-

ple. The potential barrier is raised from V = 0 to V = 2E (where E is the average energy

of the incident wave packet) linearly in time. If tp be the instant around which we start

to rise the barrier height, then the change of barrier height with time is given as follows

(here for the case of transmission),

V = 0 for t < tp

V =
(t− tp)

ε
V0 for tp < t < tp + ε

V = V0 for t > tp + ε

In Figure 5.5 we plot the computed values of Ts(t) and Tp(t) for different values of ε,

the time taken for raising the barrier from 0 to V0. It is seen that superarrivals are also

exhibited in the transmitted wave packet. Superarrivals can be quantitatively defined

here in the case of transmission by a parameter η′ (which has been plotted against ε in

Figure 5.6) given by

η′ =
I ′p − I ′s
I ′s

(5.27)

where the quantities I ′p and I ′s are defined with respect to ∆t = (tc − td) during which

superarrivals occur for the case of transmitted wave packet

I ′p =
∫

∆t
|Tp(t)|2 dt (5.28)

I ′s =
∫

∆t
|Ts(t)|2 dt (5.29)

Next, we consider the question as to how fast the influence of barrier perturbation

travels across the wave packet (signal velocity ve). Note that even in a classical theory

the information content of a wave packet does not always propagate with the group

velocity vg of a wave packet which is usually identified with the velocity of the peak of

a wave packet [110]. Profiles of the quantum wave packet are plotted at various instants

in Figure 5.7. An incident packet gets distorted upon hitting the time-varying barrier. It
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Figure 5.6: Superarrivals in the transmitted wave packet are shown to decrease with increase

in ε, the time taken for barrier raising. The three different curves correspond to three different

values of the detector position x′.
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Figure 5.7: Snapshots of the wave packet are plotted at four different instants of time.

The initial narrow Gaussian is heavily distorted upon striking the barrier. It splits up

into two, with the reflected part possessing a secondary peak shifted towards the detector.

splits into two pieces, one of which moves towards the right (transmitted particles). The

reflected packet has a secondary peak shifted towards the left. It is thus not possible to

uniquely define a group velocity vg for the reflected packet in this case.

The action due to a local perturbation (reduction of barrier height) propagates across

the wave packet with a signal velocity ve which affects the time evolving reflection proba-

bility that can be measured at different points. Thus a distant observer who records the

growth of reflection probability becomes aware of the perturbation of the barrier (occuring

from an instant tp) at the instant td when the time varying reflection probability starts

deviating from that in the unperturbed case. Then ve is given by

ve =
D

td − (tp − ε/2)
(5.30)

We compute ve and vg ≡< p > /m for a range of parameters and plot ve/vg versus ε in

Figure 5.8. Both ∆t (the duration of superarrivals) and ve (the signal velocity) decrease

with increasing ε (or, decreasing rate of perturbation). The magnitude of superarrivals

(η) also decreases with increasing ε (Figure 5.4). From such behaviours of η, ∆t and

ve we infer the following explanation for the origin of superarrivals. The barrier pertur-
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Figure 5.8: The upper curve represents a plot of ∆t (duration of superarrivals) versus ε.

The lower curve is a plot of ve/vg versus ε. Here the detector position x′ = −0.4.

bation imparts a “kick” on the impinging wave packet which splits, and a part of it is

reflected with a distortion. A finite disturbance proportional to this “kick” or the rate of

perturbation propagates from the reducing barrier to the reflected packet, which results

in a proportional magnitude of superarrivals η. Note that information about the barrier

perturbation reaches the detector at the instant td with a velocity ve which decreases with

the decreasing magnitude of impulse imparted to a wave packet. These results therefore

suggest that information about the barrier perturbation propagates with a definite speed

across the wave function which plays the role of a “field”.

We have seen that a counter intuitive enhancement of probabilities takes place in

both the cases as a result of barrier perturbation. In the next section we shall discuss

a possible scheme of secure transfer of continuous information by exploiting the above

feature of superarrivals caused by the dynamical effect of perturbation of the boundary

conditions on the wave function.
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5.3 Information transfer using the wave function through a time-

varying boundary

Superarrivals become more pronounced for larger rate of perturbation. It appears as if

the effect of reducing or rising the barrier imparts a dynamical “kick” to the wave packet,

which is then propagated to the detector. A local change in potential affects a wave packet

globally, the global effect being manifested through the time evolution of the packet. The

action due to a local perturbation (barrier height reduction or raising) propagates across

the wave packet at a finite speed, ve, affecting the time evolving reflection (or transmission)

probability. Thus a distant observer who records the growth of reflection probability

becomes aware of perturbation of the barrier (starting at an instant tp) from the instant

td when the time-varying reflection (or transmission) probability starts deviating from

that measured in the unperturbed case.

It can be seen from Figures 5.4 and 5.8 that the magnitude of superarrivals η, the

signal velocity ve and the duration of superarrivals ∆t all decreases monotonically with

increasing ε (or decreasing the rate of barrier reduction or raising). The reducing (or

rising) barrier imparts a kick (the magnitude of which is proportional to the rate of

reduction) on the wave packet. This disturbance is propagated across the wave packet to

reach the detector. We see that information about barrier perturbation taking place at

location xc and starting at time tp propagates through the wave packet and reaches the

detector located at x′ at time td with a finite velocity ve.

A lot of interest is currently being devoted to study and develop new schemes of

quantum information transfer (see, for instance, Alber et al [111] ), and much work is

going on to optimize the capacity of classical and quantum channels. Let us see how

the present scheme of superarrivals could, in principle, be used for information transfer

through the wave function. In order to do so, it is important to focus on the variation of

∆t = tc − td (the duration of superarrivals) as a function of ε (the time taken for barrier

perturbation). This is plotted in Figure 5.9 for three different values of the detector

position x′. Note that ∆t decreases monotonically with increasing ε for a wide range of

values of ε. Now suppose a particular curve in Figure 5.9 (functional relation between

∆t and ε for a fixed value of detector position x′) is chosen as a key which is shared by
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Figure 5.9: The duration of superarrivals ∆t = (tc − td) is plotted versus ε. The three

different curves denote three different values of the detector position x′.

two persons Alice and Bob who want to exchange information. Alice is at the barrier

and receives a continuous inflow of particles whose wave function is given by the initial

Gaussian. Alice has the choice of reducing (or raising) the barrier height at completely

random different rates. She chooses one particular value of ε for a single run of the

experiment, and she wants Bob who is at the detector to be able to decipher this value of

ε. Bob monitors the time evolution of |Rp(t)|2 (or |Tp(t)|2) through the detector counts

and is able to decipher tc, td, and hence ∆t by comparison with the curve |Rs(t)|2 (or

|Ts(t)|2) for the static case. He then uses his key to infer the exact value of ε corresponding

to the particular value of ∆t he has measured. The whole procedure can be repeated with

different rates of barrier reduction (or raising) as many times as required by Alice and Bob.

This exchange is secure because it would not be possible for any eavesdropper to decipher

Alice’s chosen value of ε without having access to the key. It is important to note that

information transfer [112] takes place in this scheme without any shared entanglement

between the two players Alice and Bob. Also, the variable ε can vary continuously in the

allowed parameter range.
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Before concluding the present chapter let us focus on the manifestation of wave-particle

duality in the context of the phenomenon of superarrivals. We argue that both classical

wave-like and classical particle-like properties can be exhibited in the same gedanken

experimental set-up for obtaining superarrivals through Schrödinger dynamics.

5.4 Quantum superarrivals: Bohr’s wave-particle duality revis-

ited

The phenomenon of quantum superarrivals is manifested in the probabilities for Schrödinger

wave packets scattered from perturbed potential barriers. The purpose of this section is

to focus on the manifestation of wave-particle duality in the context of the phenomenon

of superarrivals. Here we argue that both classical wave-like and classical particle-like

properties can be exhibited in the same gedanken experimental set-up for obtaining su-

perarrivals through Schrödinger dynamics [113]. An interesting question regarding the

tenet of mutual exclusiveness, a la Bohr, of these two properties is raised in the context

of this phenomenon.

Over the years, the double-slit experiment has remained the archetypical example for

displaying the key features of the superposition of quanta, as well as of the discreteness

of quanta. Interference experiments like the double-slit experiment, are however, not

the only ones featuring aspects of wave-particle duality. By the present example we

would like to emphasize that the curious aspects of wave-particle duality could also be

exhibited in other quantum phenomenon. A number of recent experiments in optical

and condensed matter systems have exhibited novel and interesting characteristics of

Schrödinger dynamics [98]. Here we propose one such example in the particular arena

of time-dependent wave packet dynamics which leads to quantum superarrivals. Let

us here restrict ourselves to one particular manifestation of superarrivals, namely, the

superarrivals observed in the reflection probability when the barrier height is reduced

to zero. As was discussed in the previous sections, other kinds of barrier perturbations

may also lead to superarrivals. Since our purpose here is to bring forth an example

highlighting certain curious features of wave-particle duality, we will consider without the

loss of generality the following experimental scenario.
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We consider a Gaussian wave packet initially centered at x0, which moves to the right

and strikes a potential barrier of height V0 and width w centred at a point xc. A detector

placed at a point x′ far to the left of x0 measures the time- dependent reflection prob-

ability by counting the reflected particles arriving there up to various instants. Another

detector placed to the right of the barrier at a point x′′ such that both the detectors are

equidistant from the barrier, i.e., xc − x′ = x′′ − xc, measures the time-dependent trans-

mission probability by counting the transmitted particles arriving there up to various

instants. Both the detectors record the cumulative number of particles arriving at them

for the following two separate cases: (i) for a static barrier, and (ii) when the barrier is

perturbed by reducing its height to zero linearly in time during the time interval ε which

may be varied for different runs of the experiment. At any instant before the asymptotic

value of the reflection probability is attained, the time evolving reflection probability in

the region −∞ < x ≤ x′ is given by

|R(t)|2 =
∫ x′

−∞
|ψ (x, t)|2 dx (5.31)

We denote the reflection probability for the static and the perturbed cases as |Rs(t)|2

and |Rp(t)|2 respectively. Similarly, at any instant before the asymptotic value of the

transmission probability is attained, the time evolving transmission probability in the

region x′′ ≤ x ≤ ∞ is given by

|T (t)|2 =
∫ ∞

x′′
|ψ (x, t)|2 dx (5.32)

The transmission probability for the static and the perturbed cases are denoted as |Ts(t)|2

and |Tp(t)|2 respectively. It is important to stress again that these four functions |Rs(t)|2,
|Rp(t)|2, |Ts(t)|2 and |Tp(t)|2, all measure the cumulative number of particles that arrive

at the detectors up to various instants of time t.

Let us now concentrate on certain specific features of superarrivals, that are relevant

to the argument of the present section. In Figure 5.10 we provide plots of the four prob-

abilities |Rs(t)|2, |Rp(t)|2, |Ts(t)|2 and |Tp(t)|2 versus time for a particular choice of the

parameter ε (barrier reduction time). The initial height of the barrier V0 is chosen such

that there is no transmission for the static barrier, as represented by the horizontal line for

|Ts(t)|2 in the figure. The intersection of the curves |Rs(t)|2 and |Rp(t)|2 clearly reveals, as
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Figure 5.10: The reflection and transmission probabilities are plotted with time for the static

as well as perturbed cases. The barrier reduction time ε = 10. The region within the small box

exhibits a kink in the transmitted probability.
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Figure 5.11: The transmission probability for the perturbed barrier is plotted versus time for

three different values of the barrier reduction time. The flat regions of the curves indicate no

transmission during these time intervals
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discussed above, the occurance of superarrivals in the time-dependent reflection probabil-

ity. The time-dependent transmission probabilty for the perturbed barrier, |Tp(t)|2 starts

to rise monotonically, and then stays constant for a small duration of time. The latter

behaviour is seen as a kink in the curve |Tp(t)|2 highlighted by the box inside Figure 5.10.

Finally, |Tp(t)|2, rises again to reach its asymptotic value symbolising the passage of the

entire transmitted portion of the wave packet. Note that that the asymptotic values of the

transmitted and reflected probabilities add up to 1, i.e., |Rp(t∞)|2 + |Tp(t∞)|2 = 1, since

there is no loss of probability (no particle disappears undetected). The highlighted region

of Figure 5.10 representing the kink or the stoppage of growth in |Tp(t)|2, is magnified

and shown in Figure 5.11 where we also plot portions of |Tp(t)|2 with time for two other

values of ε. It is clear from these curves that there exists a finite interval of time during

which the detector at x′′ registers no counts symbolised by the flat regions of the plots.

It is interesting to look for interpretations of the results of this experiment. Let us

first focus on the reflection probability. The very origin of superarrivals in the reflection

probability can be ascribed to a “kick” or disturbance affected on the wave packet due

to the perturbing barrier. The magnitude of this impact on the wave packet is propor-

tional to the rate of barrier perturbation, and as was observed, results in a proportionate

magnitude of superarrivals. This quantitative feature can only be understood in terms of

the classical wave-like nature of the impinging wave packet, since the information about

barrier perturbation reaches the detector x′ with a definite velocity ve. This velocity of

information transfer again varies with the rate of barrier reduction [107, 109]. This lat-

ter feature is only possible if the wave function acts as a classical field transmitting the

information about barrier perturbation.

Next, consider the transmission probability. If we now think in terms of the wave-

like nature of the impinging wave packet, a part of it will be transmitted due to barrier

reduction. Thus |Tp(t)|2 is expected to grow monotonically at all times till it reaches

it asymptotic value at t∞ signalling the passage of the whole transmitted packet. At

no interval of time does one expect |Tp(t)|2 to remain constant signifying no arrival of

particles at x′′ during this interval. A constant value for |Tp(t)|2 over a finite interval of

time that one gets is the very antithesis of wave-like behaviour representing the continuous

flow of probability. The very fact that one obtains flat regions in the curves for |Tp(t)|2
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for several different values of the rate of barrier perturbation, can only be explained with

the interpretation of a discrete classical particle-like behaviour for the impinging wave

packet. This is how one can understand the lack of clicks in the detector located at x′′

during a specific interval of time.

We see that wave-particle duality is exhibited in the same phenomenon of superar-

rivals if one observes both the reflected and the transmitted probabilities, respectively on

the two sides of the barrier. One may proceed even further in trying to find an inter-

pretation of the phenomenon of superarrivals in the context of Bohr’s complementarity

principle (BCP) [114] between the wave and particle pictures of fundamental quantum

entities. According to the BCP the classical concepts like wave or particle description

are indispensable for describing quantum mechanical formula, but nonetheless, these very

classical concepts are subject to certain rudimentary limitations elucidated by the prin-

ciple of mutual exclusiveness (ME), a precise statement for which was provide by Bohr

in Ref. [114]: “... any given application of classical concepts precludes the simultaneous

use of other classical concepts which in a different connection are equally necessary for

the elucidation of the phenomena”. Bohr regarded this ME as a necessary ingredient in

BCP to ensure its inner consistency. In the present gedanken experiment we see that the

reflected and the transmitted probabilities arise from the same wave packet, or in other

words, a part of the incident wave packet is reflected, and another part transmitted from

the barrier at the same time. The above picture seems to imply that the sense in which

ME is usually talked about, is not satisfied in the present experiment. One is forced to

invoke both classical wave-like, and classical particle-like properties for the Schrödinger

wave packet at the same time to describe the complete results of this experiment.

5.5 Summary

In this chapter we have discussed a new quantum mechanical effect which occurs in the

time dependent reflection/transmission probabilities for a propagating Gaussian wave

packet which encounters a localised time-dependent rectangular potential barriers. We

have shown that a counter intuitive enhancement of probabilities takes place in both the

cases as a result of barrier perturbation. By reducing the height of the barrier to zero in
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a short span of time during which there is a significant overlap of it with the wave packet,

we observed that the reflection probability is larger compared to the case of reflection

from a static barrier for a small but finite interval of time. The particular example of

superarrivals in the reflection probability when the barrier height is brought down is not

the only example of superarrivals with time dependent barriers. Indeed, other cases of

time dependent barriers with oscillating height and width can be considered to lead to

superarrivals in the reflected as well as transmitted probabilities. We have seen that

superarrivals occur both in the reflection and transmission probabilities when the barrier

height is reduced/increased (theses two cases are complementary to each other). In both

the cases (superarrivals in reflection/transmission probabilities) the wave function plays

the role of a field or carrier through which information is transmitted.

This phenomenon of quantum superarrivals can be explained in terms of the dynamical

kick imparted on the wave packet by the time-evolving barrier. Note that the information

content of a wave packet does not always propagate with its group velocity vg which is

usually identified with the velocity of the peak of the wave packet. What we see is that a

local change in potential affects the wave packet globally, the global effect being manifested

through the time evolution of the packet. Information about barrier perturbation, or

change in the boundary conditions, propagates across the wave function and then reaches

the detector with a finite speed (signal velocity, ve) which is also proportional to the rate

at which the barrier height is reduced. We also found the magnitude of superarrivals

to be proportional to the rate of reduction of the potential barrier. We argued that

superarrivals occur because of the “objective reality” of a wave function acting as a “field”

which mediates across it the propagation of a physical disturbance, viz. perturbation of

the potential barrier. We have discussed a possible scheme of secure transfer of continuous

information by exploiting the above feature of superarrivals caused by the dynamical effect

of perturbation of the boundary condition on the wave function.

Next, we have presented a new manifestation of wave-particle duality in the context

of the phenomenon of superarrivals where we have argued that both classical wave-like

and classical particle-like properties can be exhibited in the same gadenken experimental

set-up for obtaining superarrivals through Schrödinger dynamics. Further work involving

detailed analyses of the various aspects of superarrivals is needed to understand the tenet
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of “mutual exclusiveness” (ME) in the context of the present experiment. The observa-

tional status of Bohr’s complementarity principle (BCP) [114], as regards ME between

the wave and particle descriptions, has been debated upon in recent years. It has been

argued [115] that as far as interference type experiments are concerned, the quantum me-

chanical formalism guarantees the validity of ME because it contains a built-in mechanism

that ensures the disappearance of the interference pattern whenever one has which-path

information. Note however, that a claim for a counterexample using a variant of the

Mach-Zehnder interferometer exists in literature [116]. An entirely different category of

experiments are those involving the tunneling of single quanta. It has been shown using

the quantum-optical formalism that a double-prism experiment involving the reflection

and tunneling of single photons predicts anti-coincidences at two separate detectors, thus

countering ME [117]. Such an experiment has actually been performed to observe these

anti-coincidences [118], and thereinafter, a further proposal has been made to improve the

statistical viability of the coincidence counts [119]. The desired outcome of the present

analysis is to motivate investigation of more such experiments and inspire further debate

[120] which should bring forth all issues concerning wave-particle duality into a sharper fo-

cus. We conclude by noting that the phenomenon of superarrivals has a distinct quantum

mechanical significance. Its ramifications call for further studies. In particular, different

types of perturbations may be studied to probe the viability of single particle experiments

[121, 122] for demonstrating this effect.
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A Bohmian perspective

In the previous chapters we have discussed several new and interesting quantum effects.

Two such effects that could be highlighted are the spin dependent contribution to the

arrival time distribution, and the phenomenon of quantum superarrivals manifested in the

reflection and transmission probabilities of wave packets scattered from time dependent

potential barriers. The purpose of the present chapter is to obtain a clearer physical

insight into these results by invoking the Bohmian interpretation of quantum theory

[123]. It should be emphasized that though all our previous results are obtained within

the standard framework of quantum mechanics, here we will strive towards a sounder

pedagogical footing in the context of Bohmian mechanics. This is especially true regarding

the use of the probability current density in calculating the arrival time distribution, as

we argue in section 6.2. Further, we will see in section 6.3 that a clear understanding as

to how superarrivals originate is obtained with the help of the quantum potential of the

Bohm model. We will compute the “particle trajectories” and will derive a quantitative

estimate of the magnitude of superarrivals using the Bohmian interpretation of quantum

mechanics to have a deeper insight into the nature of superarrivals. In the next section

we begin with a brief review of some essential aspects of the Bohm model.

6.1 A brief review of the Bohm model

The Bohm model (BM) provides an ontological and a self-consistent interpretation of the

formalism of quantum mechanics [123]. Predictions of BM are in agreement with that of

standard quantum mechanics. Born’s interpretation of the squared modulus of a wave
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function (|ψ|2) as the probability density of finding a particle within a specified region

of space is a key ingredient of the standard framework of quantum mechanics. Thus the

standard interpretation of quantum mechanics is inherently epistemological. On the other

hand, the possibility of an alternative interpretation of quantum mechanics by interpreting

(|ψ|2) as the probability density of a particle being actually present within a specified

region was first suggested by de Broglie [124]. Later, Bohm [123] developed the details

of such an ontological model of quantum mechanics by using the notion of an observer

-independent spacetime trajectory of an individual particle which is determined by its wave

function through an equation of motion which is formulated in a way consistent with the

Schrödinger time evolution. Bohm’s model thus explicitly refuted the couterarguments

(such as the ones put forward by Pauli [125] and von Neumann [126]) prohibiting the

formulation of such a model. Subsequently, much work has been done on various aspects

of the Bohmian model [44, 127, 128]. That such a model is not unique has also been

pointed out [48] and different versions of the ontological model of quantum mechanics

have been proposed [34, 46, 47, 129]. Although any such ontological model hinges on the

notion of a definite spacetime track used to provide a description of the objective motion

of a single particle, such trajectories are not directly measurable. Hence these trajectories

have been essentially viewed as conceptual aids for understanding the various features

of quantum mechanics. Recently a study has been reported which shows an application

of such trajectories as computational aids for solving the time-dependent Schrödinger

equation [49].

In BM a wave function ψ is taken to be an incomplete specification of the state of

an individual particle. An objectively real “position” coordinate (“position” existing

irrespective of any external observation) is ascribed to a particle apart from the wave

function. Its “position” evolves with time obeying an equation that can be justified in

the following way from the Schrödinger equation

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m
∇

2ψ(x, t) + V (x, t)ψ(x, t) (6.1)

by writing

ψ = R(x, t) eiS(x,t)/h̄ (6.2)
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and using the continuity equation

∇.(ρv) +
∂ρ

∂t
= 0 (6.3)

with the probability distribution ρ(x, t) being given by

ρ(x, t) = |ψ(x, t)|2. (6.4)

It is important to note that ρ in BM is ascribed an ontological significance by regarding it

as representing the probability density of “particles” occupying actual positions and the

velocity v is interpreted as an ontological (premeasurement) velocity. On the other hand,

in the standard interpretation, ρ is interpreted as the probability density of finding (not

being) particles around specific positions and there is no concept of an ontological velocity.

Integrating Eq.(6.3) by using Eqs.(6.1), (6.2) and (6.4) and requiring that v should vanish

when ρ vanishes leads to the Bohmian equation of motion where the particle velocity

v(x, t) is given by

v(x, t) = ẋ =
∇S

m
(6.5)

The particle trajectory is thus deterministic and is obtained by integrating the velocity

equation for a given initial position. Another perspective on the notion of particle trajec-

tories in BM is obtained by decomposing the Schrodinger equation in terms of two real

equations for the modulus R and the phase S of the wave function ψ [44]

∂S

∂t
+

(∇S)2

2m
− h̄2

2m

∇
2R

R
+ V = 0 (6.6)

∂R2

∂t
+ ∇.

(
R2

∇S

m

)
= 0 (6.7)

and by indentifying

Q(x, t) = − h̄2

2m

∇
2R

R
(6.8)

as the “quantum potential” [44, 123], the equation of motion of a particle along its tra-

jectory can now be written in a form analogous to Newton’s second law

d

dt
(mẊ) = −∇(V +Q)|X (6.9)
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(with d/dt = ∂/∂t + Ẋ.∇) where the particle is subjected to a quantum force −∇Q in

addition to the classical force −∇V . The effective potential on the particle is (Q + V ).

We can now summarise the essential part of Bohm’s trajectory interpretation of non-

relativistic quantum mechanics as follows: The motion of a quantum particle is causally

determined by an objectively real complex-valued field ψ and it has a well-defined position

and velocity at each instant of time. Although this is diametrically opposed to the funda-

mental tenets of conventional quantum mechanics, precisely the same results are obtained

for all experimentally observable quantities when the above postulate is augmented by

the following three secondary ones:

(1) The guiding field ψ(x, t) satisfies the time-dependent Schrödinger equation.

(2) The velocity of the particle located at the position x at time t is given by

v(x, t) =
h̄

m
Im

∇ψ
ψ

(6.10)

(3) The quantity |ψ(x, t)|2dx is the probability of the particle being between x and x+dx

at time t even in the absence of a position measurement.

With this interpretation, we are now going to find out the arrival time probability distri-

bution for a free particle moving in one dimension.

6.2 Probability current as the arrival time distribution from the

Bohmian interpretation

Let the initial wave function for the free particle moving in one dimension be a Gaussian

wave packet,

ψ(x, t = 0) =
1

(2πσ2
0)

1/4
e
ikx− x2

4σ2
0 (6.11)

and after time t, the free Schrödinger time evolved wave function is given by

ψ(x, t) =
1

(2πσ2
t )

1/4
e
ik(x− 1

2
ut)− (x−ut)2

4σtσ0 (6.12)

where σt = σ0(1 + ih̄t/2mσ2
0) and the group velocity is u = h̄k/m. Then solving the

Bohmian trajectory equation given by
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ẋ =
h̄

m
Im

∇ψ(x, t)

ψ(x, t)
= u+

(x− ut) h̄2t

4m2σ4
0

(
1 + h̄2t2

4m2σ4
0

) (6.13)

we get

x(t) = ut+ x0(1 +
h̄2t2

4m2σ4
0

)1/2 (6.14)

where x0 is the initial position of the particle. Now, let us put a detector at x=X so that

a particle starting from the initial position x0 arrives at the detector located at x=X at

time t=T; then

X = uT + x0

(
1 +

h̄2T 2

4m2σ4
0

)1/2

(6.15)

Consequently,

x0 =
(X − uT )

(
1 + h̄2T 2

4m2σ4
0

)1/2
(6.16)

So the particle arrives at the detector located at X at time T if it starts from this initial

position x0. Now we will equate the following two probabilities:

(1) The probability of the particle to start from the initial position between x0 and x0+dx0,

which is equal to |ψ(x0, t = 0)|2dx0.

(2) The probability of the particle to arrive at the detector between the time T and T+dT ,

which is equal to Π(T )dT

Π(T )dT = |ψ(x0, t = 0)|2dx0 (6.17)

⇒ Π(T ) = |ψ(x0, t = 0)|2dx0

dT
(6.18)

Here if we put the value of x0 from Eq.(6.16), then we get

Π(T ) =
1

(2πσ2
0)

1(
1 + h̄2T 2

4m2σ4
0

)exp


− (X − uT )2

2σ2
0

(
1 + h̄2T 2

4m2σ4
0

)





u+

(X − uT )T

4m2σ4
0

(
1 + h̄2T 2

4m2σ4
0

)


 (6.19)
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This is exactly equal to the probability current density J(X, T ) of the particle at the

detector computed by substituting the expression of ψ(x, t) from Eq.(6.12) in the definition

of J given in Eq.(2.2). Here we have ignored an overall negative sign which merely implies

that x0 decreases as T is increased. Hence finally we have

Π(T ) = J(X ,T ) (6.20)

We thus see that the Bohmian model of quantum mechanics in terms of the causal

trajectories of individual particles implies the interpretation of probability current as the

arrival time distribution on a firmer footing. Here it is relevant to reemphasize certain

points on the uniqueness of the probability current in the context of Bohmian mechanics.

Note that the current J(X, T ) is not uniquely determined by the continuity equation. It

is determined only up to a divergenceless vector. For example, one can construct a new

current J̄ by adding the divergenceless current Ja to the current J. The newly defined

current J̄ = J + Ja then also satisfies the continuity equation with the same probability

density. Hence we are left with an apparent ambiguity in the definition of the probability

current. Now, the Bohmian guidance equation is derived from the quantum mechanical

probability current and the possibility of an additional contribution to the particle current

leads to an ambiguity at the level of the Bohmian interpretation. Deotto and Ghirardi [46]

considered different currents compatible with the continuity equation from which different

guidance laws (apart from Bohmian law) for the particle could be derived. Holland [48]

showed in the context of analyzing the uniqueness of the Bohmian model of quantum

mechanics that the Dirac equation implies a unique expression for the probability current

density for spin-1/2 particles. With the demand that the non-relativistic spin-1/2 particle

current should be obtained by taking the non-relativistic limit of the Dirac current, this

non-relativistic particle current which contains a generally nonvanishing, spin-dependent

term, is also unique. This implies a guidance law for the particle which differs by an

additional spin-dependent term from that originally proposed by de Broglie and Bohm

and it is argued [48] that this guidance equation for spin-1/2 particle is unique. Unique

expressions for the conserved currents have been explicitly derived for Dirac equation,

the Klein-Gordon equation, coupled Maxwell-Dirac equation [48, 49] and the relativistic

Kemmer equation [50, 51].
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6.3 Understanding quantum superarrivals using Bohmian me-

chanics

In the previous chapter we have discussed a new quantum mechanical effect which occurs

in the time dependent reflection/transmission probabilities for a propagating Gaussian

wave packet which encounters a localised time-dependent rectangular potential barriers.

By reducing the height of the barrier to zero in a short span of time during which there

is a significant overlap of it with the wave packet, we observed that the reflection prob-

ability is larger compared to the case of reflection from a static barrier for a small but

finite interval of time. We have seen that superarrivals occur both in the reflection and

transmission probabilities when the barrier height is reduced/increased (theses two cases

are complementary to each other). The aim of this section is to have a deeper insight

into the phenomenon of superarrivals and also to understand how superarrivals occur.

In order to understand how superarrivals originate in the particle picture, we compute

particle trajectories using the Bohmian interpretation of quantum mechanics. Using such

computed trajectories of individual particles we show that the Bohm model provides a

clear understanding of the phenomenon of superarrivals. We derive a quantitative esti-

mate of the magnitude of superarrivals using the Bohmian trajectories. We illustrate this

by considering the case of a wave packet which is reflected from the perturbed barrier.

Similar analysis can be done for the transmitted wave packet also.

We compute the Bohmian trajectories for a given set of initial positions with a Gaus-

sian distribution corresponding to the initial wave packet. This procedure is carried out

for both the cases of lowering and raising the barrier. Since our purpose is to obtain

conceptual clarity of the phenomenon of superarrivals, it suffices to illustrate our scheme

through the example of superarrivals in the reflection probability when the barrier is re-

duced. All the qualitative as well as quantitative features of superarrivals are similar

in the case where one observes the transmitted probabilty from a rising barrier. Thus,

henceforth we consider only the former case in the following discussion.

We first plot the profile of Q versus x at various instants of time near the potential

barrier (when its height is reduced) in Figure 6.1. It is then transparent how the pertur-

bation of the classical potential V affects Q away from the vicinity of the boundary of V .
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This in turn accounts for the sharp turn experienced by those particles which contribute

towards superarrivals (as we shall see explicitly later).

The following approach is used to study superarrivals in terms of the Bohmian tra-

jectories. First, a particular value of the barrier reduction rate, or ε is chosen. We then

choose a range of initial positions for which the trajectory arrival times at the detector lie

between td and tc (i.e., we select only those trajectories which contribute to superarrivals).

We consider N such trajectories whose initial positions form a Gaussian distribution. Let

us denote one such trajectory by Sip having the initial position xi and the arrival time

tip. Taking the static case, the trajectory Si for that initial position xi is computed. Let

the corresponding arrival time be ti. A superarrival parameter βi for the i-th Bohmian

trajectory is then defined as

βi =
ti − tip
ti

(6.21)

which provides a measure of superarrivals for a particular value of initial position. Next

we define an average value

β̃ =

∑
i βi
N

(6.22)

which provides a quantitative estimate of superarrivals obtained through Bohmian trajec-

tories.

Our results show that the arrival time tip for the perturbed case is sensitive to the

value of initial position xi. We have checked that for a particular initial position, ti

exceeds tip for only those trajectories which contribute to superarrivals. This is a distinct

feature associated with the superarrivals that can be identified in terms of the Bohmian

trajectories. We plot a set of Bohmian trajectories in Figure 6.3. Note that the trajectories

of the particles corresponding to the perturbed case take a sharp turn and arrive at the

detector earlier than they would have for a static barrier. Any abrupt perturbation of

the potential barrier has thus a global effect on the wave function and affects the values

of the quantum potential Q(x, t) at various points. Then, through the Bohmian equation

of motion the velocities of the incident particles get correspondingly affected much before

reaching the vicinity of the potential barrier. Superarrivals originate from those particles

in the perturbed case which reach the detector earlier than those corresponding to the

same initial positions in the static case. This accounts for why a detector records more

counts in the perturbed case during a particular time interval as compared to that in a
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Figure 6.1: Snapshots of the quantum potential Q(x, t) are plotted versus x at various instants

of time. The potential barrier is located in the region −0.008 < x < 0.008. Barrier perturbation

is from t = 400 to t = 410. The full, dashed and dotted curves represent Q at times t = 420,

425 and 430 respectively. The wells in the quantum potential move towards the left with time

and reflect incoming particles away from the vicinity of the classical barrier. This explains why

certain particles arrive at the detector earlier than they would have done if reflected from a

static barrier.
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Figure 6.2: The Bohmian superarrival parameter β̄ is plotted versus ε.
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Figure 6.3: Bohmian trajectories for particles originating from the same initial positions get

reflected differently from the static and the perturbed barriers. The trajectories undergo sharper

turns when the barrier is perturbed and arrive the detector earlier than they would have done

for the static barrier case. The barrier is placed at x = −0.008 to x = 0.008. Perturbation takes

place from t = 400 to t = 410.

static situation. The origin of superarrivals can thus be understood in this way by using

the Bohmian trajectories.

The effect of altering the barrier perturbation time ε on the magnitude of superarrivals

β̄ can be studied by computing β̄ for various values of ε. We display the results of this

study in Figure 6.2. Note that the the magnitude of superarrivals decreases monotonically

with increasing ε, or decreasing rate of perturbation. This effect was also discussed in

the previous chapter where we obtained a similar behaviour for the superarrival param-

eter η. The similarity of these two results obtained through entirely different techniques

reinforces our contention about the dynamical nature of superarrivals originating from a

“disturbance” provided by the lowering of potential barrier, which propagates across the

wave function with a definite speed.
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6.4 Summary

The purpose of the present chapter has been to secure clearer physical insights into some

results obtained in the earlier chapters by invoking the Bohmian interpretation of quantum

theory [123]. We have shown that the concept of the probability current density in

obtaining the arrival time distribution is uniquely derived in the Bohm model. Further,

we have seen that a clear understanding as to how superarrivals originate is obtained

with the help of the quantum potential. We have computed the “particle trajectories”

and derived a quantitative estimate of the magnitude of superarrivals using the Bohmian

interpretation of quantum mechanics. This analysis substantiates our earlier contention

that superarrivals arise from a dynamical disturbance provided by the perturbed barrier

which propagates across the wave packet with a definite speed.

Such time dependent quantum phenomena could be useful in furnishing examples of

the conceptual utility of the Bohm model from a perspective different from other examples

studied recently [130] for this purpose. Superarrivals is a special case of barrier crossing

problem of a quantum wave packet. A very important problem related to barrier crossing

which remains controversial at present is that concerned with the formal definition of

traversal and tunneling times, viz., “how much time a quantum particle spends inside the

barrier before tunneling”. A variety of proposals have been made for the definition of

the time (actual and mean) spent by a tunneling particle inside the barrier [131]. The

Bohmian approach gives a clear definition of the time taken for an individual particle to

cross a barrier, and hence the mean time over an ensemble, as well.



Chapter 7

Conclusions

In this thesis we have studied the arrival time distribution and the time-dependent prob-

ability of arrival for quantum wave packets evolving under different kinds of potentials.

The important implications obtained from the dynamical evolution of the wave packets

under these potentials have been discussed. Some of the key results obtained in this thesis

are (i) spin-dependence of arrival time of free particles (ii) smooth quantum to classical

transition of the arrival time distribution, (iii) demonstration of the quantum violation of

the weak equivalence principle, and (iv) understanding quantum superarrivals. The main

framework used for this study is the probability current density approach to the problem

of arrival time distribution for quantum particles.

In order to motivate the necessity of formalising arrival time distributions, we began

with a brief review of the status of time in quantum theory and the difficulties in con-

structing a time operator with desired properties. This sets up our description of the

probability current density approach in calculating the arrival time distribution for free

particles. Here we first discussed that in the non-relativistic quantum mechanics the form

of the probability current is not unique and leads to an ambiguity in the arrival time

distribution. As shown by Holland [48] the probability current can be uniquely fixed if

one starts from a relativistic quantum wave equation and this uniqueness is also pre-

served in the non-relativistic limit of the relevant relativistic equation [43]. A novel spin

dependent effect on the arrival time distribution for free particles was shown by demon-

strating the uniqueness of the conserved probability current in the non-relativistic limit

of Dirac equation. The mean arrival time was computed using the modulus of the unique
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(spin-dependent) probability current density for spin-1/2 free particles associated with a

propagating Gaussian wave packet.

This spin-dependent effect highlights the feature that the spin of a particle is an

intrinsic property and is not contingent on the presence of an external field. The scheme

we have discussed shows that the magnitude of total spin can be measured without sub-

jecting the particle to an external field. The measurability of the property of spin of a free

particle arises from the relativistic nature of the dynamical evolution of the wave function

where the relevant wave function is fundamentally 4-component (or, 2-component), even

in the non relativistic limit. Since the spin-dependent term which may contribute signif-

icantly to the arrival time distribution has been computed in the nonrelativistic regime

by starting from the relativistic Dirac equation, this provides a rather rare example of

an empirically detectable manifestation of a relativistic dynamical equation in the non

relativistic regime. A future line of investigation as an offshoot of this analysis could be

to explore the possibilities of using the relativistic quantum mechanical wave equations of

particles with spins other than spin 1/2 (such as using the relativistic Kemmer equation

for spin 0 and spin 1 bosons) in order to compute the spin-dependent terms in the prob-

ability current densities and their effects on the arrival time distribution. We have also

outlined the sketch of an experimentally realizable scheme which needs to be developed

further to test any postulated quantum mechanical approach for calculating the arrival

time distribution.

We then proceed to investigate the classical limit [71] of arrival time defined through

the probability current in the context of macroscopic limit problem of quantum mechan-

ics. Here we have considered the evolution of a quantum free particle represented by

a Gaussian wave packet. We have formulated the classical analogue of the arrival time

distribution for an ensemble of free particles represented by a phase space distribution

function evolving under the classical Liouville’s equation. We show that the quantum

results for the probability current and through it the arrival time distribution, approach

smoothly to the classical result in the large mass limit. It needs to be emphasized that it is

worthwhile to investigate the classical limit of arrival time distribution calculated from dif-

ferent theoretical approaches that have been suggested in the literature [5, 15, 31, 39, 42].

Such studies, if undertaken extensively, are not only expected to throw light on the com-
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paritive merits of different arrival time formulations, but could also be of relevance to the

behaviour of mesoscopic systems where a great deal of experimental activity is presently

underway [75]. Our outlook is concerned about an approach to test the quantitative

equivalence between the classical statistical prediction and the prediction obtained in the

macroscopic limit of quantum mechanics. What we have seen is that the mean time of

arrival of a freely moving quantum particle computed through the probability current

depends on the mass of the particle even if its group velocity is fixed. The predicted mass

dependence of mean arrival time is, in principle, amenable for experimental verification,

and is a clear signature of the probability current approach to time in quantum mechanics

[33, 36, 42, 43].

The free fall of quantum wave packets is an interesting arena of study vis-a-vis the

issue of compatibility of quantum mechanics with the equivalence principle of gravitation

[82]-[91]. We have studied the evolution of quantum wave packets under the gravita-

tional potential in the context of a gedanken quantum analogue of Galileo’s leaning tower

experiment. We have shown that the position probability density and the arrival time

distribution for the particle calculated through probability current density exhibits mass

dependence. The observable position probability and the mean time (computed through

the quantum probability current) taken by the freely falling particle to arrive at a par-

ticular location are also shown to be mass dependent. Our results of mass-dependence

of these observable quantities indicate the manifest violation of a particular form of the

quantum analogue of the weak equivalence principle [79]. The variation of the detection

probability with mass disappears in the limit of large mass of the freely falling particles,

as is expected for classical objects. This saturation of the detection probability is also

reflected in the mean arrival time distribution defined through the quantum probability

current, which approaches the classical result in a continuous manner with the increase of

mass. We have seen that the compatibility of the weak equivalence principle with quan-

tum mechanics can be achieved in the classical limit within this framework for particles

falling freely under gravity. The predicted mass dependence of the arrival time of freely

falling molecular mass particles offers a distinct possibility of checking the empirical status

of the equivalence principle at the quantum level.

The manifestation of nonlocality is ubiquitous in quantum mechanics. The dynamics
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of wave packets is certainly not left untouched by implications of quantum nonlocality

as was shown by Greenberger in the context of a particle in a box with varying bound-

aries [93]. The phenomenon of quantum superarrivals [107] is an offshoot of this effect.

We have discussed how this recently uncovered phenomena occurs in the time dependent

reflection/transmission probabilities for a propagating Gaussian wave packet which en-

counters localised time-dependent rectangular potential barriers. We have argued that

quantum superarrivals can be explained in terms of the dynamical kick imparted on the

wave packet by the time-evolving barrier. Information about barrier perturbation, or

change in the boundary conditions, propagates across the wave function and then reaches

the detector with a finite speed (signal velocity, ve) which is also proportional to the rate

at which the barrier height is reduced. It can be interpreted that superarrivals occur

because of the “objective reality” of a wave function acting as a “field” which mediates

across it the propagation of a physical disturbance, viz. perturbation of the potential

barrier. We have discussed a possible scheme of secure transfer of continuous information

by exploiting the above feature of superarrivals caused by the dynamical effect of pertur-

bation of the boundary condition on the wave function. Next, we have presented a new

manifestation of wave-particle duality in the context of the phenomenon of superarrivals

where we have argued that both classical wave-like and classical particle-like properties

can be exhibited in the same gedanken experimental set-up for obtaining superarrivals

through Schrödinger dynamics. According to the Bohr’s complementarity principle the

classical concepts like wave or particle description are indispensable for describing quan-

tum mechanical formula, but nonetheless, these very classical concepts are subject to

certain rudimentary limitations elucidated by the principle of mutual exclusiveness [114].

Further work involving detailed analyses of the various aspects of superarrivals as could be

elaborated in different types of dynamical potentials, is needed to understand the tenet of

mutual exclusiveness in the context of the present example that we have furnished. This

issue is of relevance because of certain recent claims in the literature related to the status

of mutual exclusiveness in tunneling and other experiments [116]-[120].

Finally, we make use of the Bohmian interpretation of quantum theory [123] to obtain

a clearer physical insight into some of our key results. The probability current density in

calculating the arrival time distribution can be placed on a sounder pedagogical footing
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within the context of Bohmian mechanics. Further, we have shown that a clear under-

standing as to how superarrivals originate is obtained with the help of quantum potential

of the Bohm model. We have computed the “particle trajectories” and derived a quan-

titative estimate of the magnitude of superarrivals using the Bohmian interpretation of

quantum mechanics to have a deeper insight into the nature of superarrivals. This analysis

substantiates our earlier contention that superarrivals arise from a dynamical disturbance

provided by the perturbed barrier which propagates across the wave packet with a defi-

nite speed and affects the “particles”. Such time dependent quantum phenomena could

be useful in furnishing examples of the conceptual utility of the Bohm model.

We conclude by noting that other aspects of the foundations of quantum mechanics

are intertwined to make the study of the arrival time problem even more attractive: the

“measurement problem”, the quantum Zeno effect, the interpretation of wave- particle

duality, and the difficulty in explaining quantum mechanically the occurrence of actual

classical-like events are important ingredients of this research. A very important question

is raised by Rovelli [132] that “can we compute the exact time at which a quantum

measurement happens ?” Without addressing the measurement problem (i.e. what causes

the wave funcfunction to collapse) he discussed the problem of the timing of the quantum

measurement. Another problem related to barrier crossing which remains controversial at

present is that concerned with the formal definition of traversal and tunneling times [133,

134]. This subtle question has received considerable attention in recent years, motivated

in part by the possible applications of tunneling in semiconductor devices. A variety

of proposals have been made for the definition of the time (actual and mean) spent by

a tunneling particle inside the barrier[131]. The Bohmian interpretation can provide

a deeper insight into the problem as to how much time a physical corpuscle can take

to traverse a region. Research in foundational problems of quantum theory of which

the arrival or traversal time is an integral part, is exciting due to the scope of empirical

probes made possible by the advance of modern technology, particularly in the fabrication

of nano materials.
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